Newer
Older
static char help[] = "Time dependent Navier-Stokes problem in 2d and 3d with finite elements.\n\
We solve the Navier-Stokes in a rectangular\n\
domain, using a parallel unstructured mesh (DMPLEX) to discretize it.\n\
This example supports discretized auxiliary fields (Re) as well as\n\
multilevel nonlinear solvers.\n\
Contributed by: Julian Andrej <juan@tf.uni-kiel.de>\n\n\n";
#include <petscdmplex.h>
#include <petscsnes.h>
#include <petscts.h>
#include <petscds.h>
/*
Navier-Stokes equation:
du/dt + u . grad u - \Delta u - grad p = f
div u = 0
*/
typedef struct {
} AppCtx;
#define REYN 400.0
/* MMS1
u = t + x^2 + y^2;
v = t + 2*x^2 - 2*x*y;
p = x + y - 1;
f_x = -2*t*(x + y) + 2*x*y^2 - 4*x^2*y - 2*x^3 + 4.0/Re - 1.0
f_y = -2*t*x + 2*y^3 - 4*x*y^2 - 2*x^2*y + 4.0/Re - 1.0
so that
u_t + u \cdot \nabla u - 1/Re \Delta u + \nabla p + f = <1, 1> + <t (2x + 2y) + 2x^3 + 4x^2y - 2xy^2, t 2x + 2x^2y + 4xy^2 - 2y^3> - 1/Re <4, 4> + <1, 1>
+ <-t (2x + 2y) + 2xy^2 - 4x^2y - 2x^3 + 4/Re - 1, -2xt + 2y^3 - 4xy^2 - 2x^2y + 4/Re - 1> = 0
\nabla \cdot u = 2x - 2x = 0
where
<u, v> . <<u_x, v_x>, <u_y, v_y>> = <u u_x + v u_y, u v_x + v v_y>
*/
PetscErrorCode mms1_u_2d(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nf, PetscScalar *u, void *ctx)
{
u[0] = time + x[0] * x[0] + x[1] * x[1];
u[1] = time + 2.0 * x[0] * x[0] - 2.0 * x[0] * x[1];
PetscErrorCode mms1_p_2d(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nf, PetscScalar *p, void *ctx)
{
static PetscErrorCode mms2_u_2d(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nf, PetscScalar *u, void *ctx)
{
u[0] = PetscSinReal(time + x[0]) * PetscSinReal(time + x[1]);
u[1] = PetscCosReal(time + x[0]) * PetscCosReal(time + x[1]);
static PetscErrorCode mms2_p_2d(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nf, PetscScalar *p, void *ctx)
{
static void f0_mms1_u(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f0[])
{
const PetscReal Re = REYN;
const PetscInt Ncomp = dim;
PetscInt c, d;
for (c = 0; c < Ncomp; ++c) {
for (d = 0; d < dim; ++d) f0[c] += u[d] * u_x[c * dim + d];
}
f0[0] += u_t[0];
f0[1] += u_t[1];
f0[0] += -2.0 * t * (x[0] + x[1]) + 2.0 * x[0] * x[1] * x[1] - 4.0 * x[0] * x[0] * x[1] - 2.0 * x[0] * x[0] * x[0] + 4.0 / Re - 1.0;
f0[1] += -2.0 * t * x[0] + 2.0 * x[1] * x[1] * x[1] - 4.0 * x[0] * x[1] * x[1] - 2.0 * x[0] * x[0] * x[1] + 4.0 / Re - 1.0;
static void f0_mms2_u(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f0[])
{
const PetscReal Re = REYN;
const PetscInt Ncomp = dim;
PetscInt c, d;
for (c = 0; c < Ncomp; ++c) {
for (d = 0; d < dim; ++d) f0[c] += u[d] * u_x[c * dim + d];
}
f0[0] += u_t[0];
f0[1] += u_t[1];
f0[0] -= (Re * ((1.0L / 2.0L) * PetscSinReal(2 * t + 2 * x[0]) + PetscSinReal(2 * t + x[0] + x[1]) + PetscCosReal(t + x[0] - x[1])) + 2.0 * PetscSinReal(t + x[0]) * PetscSinReal(t + x[1])) / Re;
f0[1] -= (-Re * ((1.0L / 2.0L) * PetscSinReal(2 * t + 2 * x[1]) + PetscSinReal(2 * t + x[0] + x[1]) + PetscCosReal(t + x[0] - x[1])) + 2.0 * PetscCosReal(t + x[0]) * PetscCosReal(t + x[1])) / Re;
static void f1_u(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f1[])
{
const PetscReal Re = REYN;
const PetscInt Ncomp = dim;
PetscInt comp, d;
for (comp = 0; comp < Ncomp; ++comp) {
for (d = 0; d < dim; ++d) f1[comp * dim + d] = 1.0 / Re * u_x[comp * dim + d];
f1[comp * dim + comp] -= u[Ncomp];
static void f0_p(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f0[])
{
for (d = 0, f0[0] = 0.0; d < dim; ++d) f0[0] += u_x[d * dim + d];
static void f1_p(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f1[])
{
PetscInt d;
for (d = 0; d < dim; ++d) f1[d] = 0.0;
}
/*
(psi_i, u_j grad_j u_i) ==> (\psi_i, \phi_j grad_j u_i)
*/
static void g0_uu(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, PetscReal u_tShift, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar g0[])
{
PetscInt NcI = dim, NcJ = dim;
PetscInt fc, gc;
PetscInt d;
for (d = 0; d < dim; ++d) g0[d * dim + d] = u_tShift;
for (fc = 0; fc < NcI; ++fc) {
for (gc = 0; gc < NcJ; ++gc) g0[fc * NcJ + gc] += u_x[fc * NcJ + gc];
}
}
/*
(psi_i, u_j grad_j u_i) ==> (\psi_i, \u_j grad_j \phi_i)
*/
static void g1_uu(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, PetscReal u_tShift, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar g1[])
{
PetscInt NcI = dim;
PetscInt NcJ = dim;
PetscInt fc, gc, dg;
for (fc = 0; fc < NcI; ++fc) {
for (gc = 0; gc < NcJ; ++gc) {
for (dg = 0; dg < dim; ++dg) {
/* kronecker delta */
if (fc == gc) g1[(fc * NcJ + gc) * dim + dg] += u[dg];
}
}
}
}
/* < q, \nabla\cdot u >
NcompI = 1, NcompJ = dim */
static void g1_pu(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, PetscReal u_tShift, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar g1[])
{
for (d = 0; d < dim; ++d) g1[d * dim + d] = 1.0; /* \frac{\partial\phi^{u_d}}{\partial x_d} */
}
/* -< \nabla\cdot v, p >
NcompI = dim, NcompJ = 1 */
static void g2_up(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, PetscReal u_tShift, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar g2[])
{
for (d = 0; d < dim; ++d) g2[d * dim + d] = -1.0; /* \frac{\partial\psi^{u_d}}{\partial x_d} */
}
/* < \nabla v, \nabla u + {\nabla u}^T >
This just gives \nabla u, give the perdiagonal for the transpose */
static void g3_uu(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, PetscReal u_tShift, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar g3[])
{
const PetscReal Re = REYN;
const PetscInt Ncomp = dim;
PetscInt compI, d;
for (compI = 0; compI < Ncomp; ++compI) {
for (d = 0; d < dim; ++d) g3[((compI * Ncomp + compI) * dim + d) * dim + d] = 1.0 / Re;
static PetscErrorCode ProcessOptions(MPI_Comm comm, AppCtx *options)
{
PetscOptionsBegin(comm, "", "Navier-Stokes Equation Options", "DMPLEX");
PetscCall(PetscOptionsInt("-mms", "The manufactured solution to use", "ex46.c", options->mms, &options->mms, NULL));
PetscFunctionReturn(PETSC_SUCCESS);
static PetscErrorCode CreateMesh(MPI_Comm comm, DM *dm, AppCtx *ctx)
{
PetscCall(DMCreate(comm, dm));
PetscCall(DMSetType(*dm, DMPLEX));
PetscCall(DMSetFromOptions(*dm));
PetscCall(DMViewFromOptions(*dm, NULL, "-dm_view"));
PetscFunctionReturn(PETSC_SUCCESS);
static PetscErrorCode SetupProblem(DM dm, AppCtx *ctx)
{
Matthew Knepley
committed
PetscDS ds;
DMLabel label;
PetscCall(DMGetDimension(dm, &dim));
PetscCall(DMGetDS(dm, &ds));
PetscCall(DMGetLabel(dm, "marker", &label));
case 2:
switch (ctx->mms) {
case 1:
PetscCall(PetscDSSetResidual(ds, 0, f0_mms1_u, f1_u));
PetscCall(PetscDSSetResidual(ds, 1, f0_p, f1_p));
PetscCall(PetscDSSetJacobian(ds, 0, 0, g0_uu, g1_uu, NULL, g3_uu));
PetscCall(PetscDSSetJacobian(ds, 0, 1, NULL, NULL, g2_up, NULL));
PetscCall(PetscDSSetJacobian(ds, 1, 0, NULL, g1_pu, NULL, NULL));
PetscCall(PetscDSSetExactSolution(ds, 0, mms1_u_2d, ctx));
PetscCall(PetscDSSetExactSolution(ds, 1, mms1_p_2d, ctx));
PetscCall(DMAddBoundary(dm, DM_BC_ESSENTIAL, "wall", label, 1, &id, 0, 0, NULL, (void (*)(void))mms1_u_2d, NULL, ctx, NULL));
PetscCall(PetscDSSetResidual(ds, 0, f0_mms2_u, f1_u));
PetscCall(PetscDSSetResidual(ds, 1, f0_p, f1_p));
PetscCall(PetscDSSetJacobian(ds, 0, 0, g0_uu, g1_uu, NULL, g3_uu));
PetscCall(PetscDSSetJacobian(ds, 0, 1, NULL, NULL, g2_up, NULL));
PetscCall(PetscDSSetJacobian(ds, 1, 0, NULL, g1_pu, NULL, NULL));
PetscCall(PetscDSSetExactSolution(ds, 0, mms2_u_2d, ctx));
PetscCall(PetscDSSetExactSolution(ds, 1, mms2_p_2d, ctx));
PetscCall(DMAddBoundary(dm, DM_BC_ESSENTIAL, "wall", label, 1, &id, 0, 0, NULL, (void (*)(void))mms2_u_2d, NULL, ctx, NULL));
default:
SETERRQ(PETSC_COMM_WORLD, PETSC_ERR_ARG_OUTOFRANGE, "Invalid MMS %" PetscInt_FMT, ctx->mms);
default:
SETERRQ(PETSC_COMM_WORLD, PETSC_ERR_ARG_OUTOFRANGE, "Invalid dimension %" PetscInt_FMT, dim);
PetscFunctionReturn(PETSC_SUCCESS);
static PetscErrorCode SetupDiscretization(DM dm, AppCtx *ctx)
{
MPI_Comm comm;
DM cdm = dm;
PetscFE fe[2];
PetscInt dim;
PetscBool simplex;
PetscCall(PetscObjectGetComm((PetscObject)dm, &comm));
PetscCall(DMGetDimension(dm, &dim));
PetscCall(DMPlexIsSimplex(dm, &simplex));
PetscCall(PetscFECreateDefault(comm, dim, dim, simplex, "vel_", PETSC_DEFAULT, &fe[0]));
PetscCall(PetscObjectSetName((PetscObject)fe[0], "velocity"));
PetscCall(PetscFECreateDefault(comm, dim, 1, simplex, "pres_", PETSC_DEFAULT, &fe[1]));
PetscCall(PetscFECopyQuadrature(fe[0], fe[1]));
PetscCall(PetscObjectSetName((PetscObject)fe[1], "pressure"));
/* Set discretization and boundary conditions for each mesh */
PetscCall(DMSetField(dm, 0, NULL, (PetscObject)fe[0]));
PetscCall(DMSetField(dm, 1, NULL, (PetscObject)fe[1]));
PetscCall(DMCreateDS(dm));
PetscCall(SetupProblem(dm, ctx));
while (cdm) {
PetscObject pressure;
MatNullSpace nsp;
PetscCall(DMGetField(cdm, 1, NULL, &pressure));
PetscCall(MatNullSpaceCreate(PetscObjectComm(pressure), PETSC_TRUE, 0, NULL, &nsp));
PetscCall(PetscObjectCompose(pressure, "nullspace", (PetscObject)nsp));
PetscCall(DMCopyDisc(dm, cdm));
PetscCall(DMGetCoarseDM(cdm, &cdm));
PetscCall(PetscFEDestroy(&fe[0]));
PetscCall(PetscFEDestroy(&fe[1]));
PetscFunctionReturn(PETSC_SUCCESS);
static PetscErrorCode MonitorError(TS ts, PetscInt step, PetscReal crtime, Vec u, void *ctx)
{

Barry Smith
committed
PetscSimplePointFn *funcs[2];
void *ctxs[2];
DM dm;
PetscDS ds;
PetscReal ferrors[2];
PetscCall(TSGetDM(ts, &dm));
PetscCall(DMGetDS(dm, &ds));
PetscCall(PetscDSGetExactSolution(ds, 0, &funcs[0], &ctxs[0]));
PetscCall(PetscDSGetExactSolution(ds, 1, &funcs[1], &ctxs[1]));
PetscCall(DMComputeL2FieldDiff(dm, crtime, funcs, ctxs, u, ferrors));
PetscCall(PetscPrintf(PETSC_COMM_WORLD, "Timestep: %04d time = %-8.4g \t L_2 Error: [%2.3g, %2.3g]\n", (int)step, (double)crtime, (double)ferrors[0], (double)ferrors[1]));
PetscFunctionReturn(PETSC_SUCCESS);
int main(int argc, char **argv)
{
AppCtx ctx;
DM dm;
TS ts;
Vec u, r;
PetscFunctionBeginUser;
PetscCall(PetscInitialize(&argc, &argv, NULL, help));
PetscCall(ProcessOptions(PETSC_COMM_WORLD, &ctx));
PetscCall(CreateMesh(PETSC_COMM_WORLD, &dm, &ctx));
PetscCall(DMSetApplicationContext(dm, &ctx));
PetscCall(SetupDiscretization(dm, &ctx));
PetscCall(DMPlexCreateClosureIndex(dm, NULL));
PetscCall(DMCreateGlobalVector(dm, &u));
PetscCall(VecDuplicate(u, &r));
PetscCall(TSCreate(PETSC_COMM_WORLD, &ts));
PetscCall(TSMonitorSet(ts, MonitorError, &ctx, NULL));
PetscCall(TSSetDM(ts, dm));
PetscCall(DMTSSetBoundaryLocal(dm, DMPlexTSComputeBoundary, &ctx));
PetscCall(DMTSSetIFunctionLocal(dm, DMPlexTSComputeIFunctionFEM, &ctx));
PetscCall(DMTSSetIJacobianLocal(dm, DMPlexTSComputeIJacobianFEM, &ctx));
PetscCall(TSSetExactFinalTime(ts, TS_EXACTFINALTIME_STEPOVER));
PetscCall(TSSetFromOptions(ts));
PetscCall(DMTSCheckFromOptions(ts, u));

Barry Smith
committed
PetscSimplePointFn *funcs[2];
void *ctxs[2];
PetscDS ds;
PetscCall(DMGetDS(dm, &ds));
PetscCall(PetscDSGetExactSolution(ds, 0, &funcs[0], &ctxs[0]));
PetscCall(PetscDSGetExactSolution(ds, 1, &funcs[1], &ctxs[1]));
PetscCall(DMProjectFunction(dm, 0.0, funcs, ctxs, INSERT_ALL_VALUES, u));
PetscCall(TSSolve(ts, u));
PetscCall(VecViewFromOptions(u, NULL, "-sol_vec_view"));
PetscCall(VecDestroy(&u));
PetscCall(VecDestroy(&r));
PetscCall(TSDestroy(&ts));
PetscCall(DMDestroy(&dm));
PetscCall(PetscFinalize());
/*TEST
# Full solves
test:
suffix: 2d_p2p1_r1
requires: !single triangle
filter: sed -e "s~ATOL~RTOL~g" -e "s~ABS~RELATIVE~g"
args: -dm_refine 1 -vel_petscspace_degree 2 -pres_petscspace_degree 1 \
-ts_type beuler -ts_max_steps 10 -ts_dt 0.1 -ts_monitor -dmts_check \
-snes_monitor_short -snes_converged_reason \
-ksp_monitor_short -ksp_converged_reason \
-pc_type fieldsplit -pc_fieldsplit_type schur -pc_fieldsplit_schur_fact_type full \
-fieldsplit_velocity_pc_type lu \
-fieldsplit_pressure_ksp_rtol 1.0e-10 -fieldsplit_pressure_pc_type jacobi
requires: !single
filter: sed -e "s~ATOL~RTOL~g" -e "s~ABS~RELATIVE~g" -e "s~ 0\]~ 0.0\]~g"
args: -dm_plex_simplex 0 -dm_refine 1 -vel_petscspace_degree 2 -pres_petscspace_degree 1 \
-ts_type beuler -ts_max_steps 10 -ts_dt 0.1 -ts_monitor -dmts_check \
-snes_monitor_short -snes_converged_reason \
-ksp_monitor_short -ksp_converged_reason \
-pc_type fieldsplit -pc_fieldsplit_type schur -pc_fieldsplit_schur_fact_type full \
-fieldsplit_velocity_pc_type lu \
-fieldsplit_pressure_ksp_rtol 1.0e-10 -fieldsplit_pressure_pc_type jacobi