Skip to content
Snippets Groups Projects
ex46.c 16.5 KiB
Newer Older
  • Learn to ignore specific revisions
  • static char help[] = "Time dependent Navier-Stokes problem in 2d and 3d with finite elements.\n\
    We solve the Navier-Stokes in a rectangular\n\
    domain, using a parallel unstructured mesh (DMPLEX) to discretize it.\n\
    This example supports discretized auxiliary fields (Re) as well as\n\
    multilevel nonlinear solvers.\n\
    Contributed by: Julian Andrej <juan@tf.uni-kiel.de>\n\n\n";
    
    #include <petscdmplex.h>
    #include <petscsnes.h>
    #include <petscts.h>
    #include <petscds.h>
    
    /*
      Navier-Stokes equation:
    
      du/dt + u . grad u - \Delta u - grad p = f
      div u  = 0
    */
    
    typedef struct {
    
    } AppCtx;
    
    #define REYN 400.0
    
    /* MMS1
    
      u = t + x^2 + y^2;
      v = t + 2*x^2 - 2*x*y;
      p = x + y - 1;
    
      f_x = -2*t*(x + y) + 2*x*y^2 - 4*x^2*y - 2*x^3 + 4.0/Re - 1.0
      f_y = -2*t*x       + 2*y^3 - 4*x*y^2 - 2*x^2*y + 4.0/Re - 1.0
    
      so that
    
        u_t + u \cdot \nabla u - 1/Re \Delta u + \nabla p + f = <1, 1> + <t (2x + 2y) + 2x^3 + 4x^2y - 2xy^2, t 2x + 2x^2y + 4xy^2 - 2y^3> - 1/Re <4, 4> + <1, 1>
                                                        + <-t (2x + 2y) + 2xy^2 - 4x^2y - 2x^3 + 4/Re - 1, -2xt + 2y^3 - 4xy^2 - 2x^2y + 4/Re - 1> = 0
        \nabla \cdot u                                  = 2x - 2x = 0
    
      where
    
        <u, v> . <<u_x, v_x>, <u_y, v_y>> = <u u_x + v u_y, u v_x + v v_y>
    */
    
    PetscErrorCode mms1_u_2d(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nf, PetscScalar *u, void *ctx)
    {
    
      u[0] = time + x[0] * x[0] + x[1] * x[1];
      u[1] = time + 2.0 * x[0] * x[0] - 2.0 * x[0] * x[1];
    
      return PETSC_SUCCESS;
    
    PetscErrorCode mms1_p_2d(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nf, PetscScalar *p, void *ctx)
    {
    
      *p = x[0] + x[1] - 1.0;
    
      return PETSC_SUCCESS;
    
    static PetscErrorCode mms2_u_2d(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nf, PetscScalar *u, void *ctx)
    {
    
      u[0] = PetscSinReal(time + x[0]) * PetscSinReal(time + x[1]);
      u[1] = PetscCosReal(time + x[0]) * PetscCosReal(time + x[1]);
    
      return PETSC_SUCCESS;
    
    static PetscErrorCode mms2_p_2d(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nf, PetscScalar *p, void *ctx)
    {
    
      *p = PetscSinReal(time + x[0] - x[1]);
    
      return PETSC_SUCCESS;
    
    static void f0_mms1_u(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f0[])
    {
    
      const PetscReal Re    = REYN;
      const PetscInt  Ncomp = dim;
      PetscInt        c, d;
    
      for (c = 0; c < Ncomp; ++c) {
    
        for (d = 0; d < dim; ++d) f0[c] += u[d] * u_x[c * dim + d];
    
      }
      f0[0] += u_t[0];
      f0[1] += u_t[1];
    
    
      f0[0] += -2.0 * t * (x[0] + x[1]) + 2.0 * x[0] * x[1] * x[1] - 4.0 * x[0] * x[0] * x[1] - 2.0 * x[0] * x[0] * x[0] + 4.0 / Re - 1.0;
      f0[1] += -2.0 * t * x[0] + 2.0 * x[1] * x[1] * x[1] - 4.0 * x[0] * x[1] * x[1] - 2.0 * x[0] * x[0] * x[1] + 4.0 / Re - 1.0;
    
    static void f0_mms2_u(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f0[])
    {
    
      const PetscReal Re    = REYN;
      const PetscInt  Ncomp = dim;
      PetscInt        c, d;
    
      for (c = 0; c < Ncomp; ++c) {
    
        for (d = 0; d < dim; ++d) f0[c] += u[d] * u_x[c * dim + d];
    
      }
      f0[0] += u_t[0];
      f0[1] += u_t[1];
    
    
      f0[0] -= (Re * ((1.0L / 2.0L) * PetscSinReal(2 * t + 2 * x[0]) + PetscSinReal(2 * t + x[0] + x[1]) + PetscCosReal(t + x[0] - x[1])) + 2.0 * PetscSinReal(t + x[0]) * PetscSinReal(t + x[1])) / Re;
      f0[1] -= (-Re * ((1.0L / 2.0L) * PetscSinReal(2 * t + 2 * x[1]) + PetscSinReal(2 * t + x[0] + x[1]) + PetscCosReal(t + x[0] - x[1])) + 2.0 * PetscCosReal(t + x[0]) * PetscCosReal(t + x[1])) / Re;
    
    static void f1_u(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f1[])
    {
    
      const PetscReal Re    = REYN;
      const PetscInt  Ncomp = dim;
      PetscInt        comp, d;
    
      for (comp = 0; comp < Ncomp; ++comp) {
    
        for (d = 0; d < dim; ++d) f1[comp * dim + d] = 1.0 / Re * u_x[comp * dim + d];
    
        f1[comp * dim + comp] -= u[Ncomp];
    
    static void f0_p(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f0[])
    {
    
      for (d = 0, f0[0] = 0.0; d < dim; ++d) f0[0] += u_x[d * dim + d];
    
    static void f1_p(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f1[])
    {
    
      PetscInt d;
      for (d = 0; d < dim; ++d) f1[d] = 0.0;
    }
    
    /*
      (psi_i, u_j grad_j u_i) ==> (\psi_i, \phi_j grad_j u_i)
    */
    
    static void g0_uu(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, PetscReal u_tShift, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar g0[])
    {
    
      PetscInt NcI = dim, NcJ = dim;
      PetscInt fc, gc;
      PetscInt d;
    
    
      for (d = 0; d < dim; ++d) g0[d * dim + d] = u_tShift;
    
    
      for (fc = 0; fc < NcI; ++fc) {
    
        for (gc = 0; gc < NcJ; ++gc) g0[fc * NcJ + gc] += u_x[fc * NcJ + gc];
    
      }
    }
    
    /*
      (psi_i, u_j grad_j u_i) ==> (\psi_i, \u_j grad_j \phi_i)
    */
    
    static void g1_uu(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, PetscReal u_tShift, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar g1[])
    {
    
      PetscInt NcI = dim;
      PetscInt NcJ = dim;
      PetscInt fc, gc, dg;
      for (fc = 0; fc < NcI; ++fc) {
        for (gc = 0; gc < NcJ; ++gc) {
          for (dg = 0; dg < dim; ++dg) {
            /* kronecker delta */
    
            if (fc == gc) g1[(fc * NcJ + gc) * dim + dg] += u[dg];
    
          }
        }
      }
    }
    
    /* < q, \nabla\cdot u >
       NcompI = 1, NcompJ = dim */
    
    static void g1_pu(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, PetscReal u_tShift, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar g1[])
    {
    
      for (d = 0; d < dim; ++d) g1[d * dim + d] = 1.0; /* \frac{\partial\phi^{u_d}}{\partial x_d} */
    
    }
    
    /* -< \nabla\cdot v, p >
        NcompI = dim, NcompJ = 1 */
    
    static void g2_up(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, PetscReal u_tShift, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar g2[])
    {
    
      for (d = 0; d < dim; ++d) g2[d * dim + d] = -1.0; /* \frac{\partial\psi^{u_d}}{\partial x_d} */
    
    }
    
    /* < \nabla v, \nabla u + {\nabla u}^T >
       This just gives \nabla u, give the perdiagonal for the transpose */
    
    static void g3_uu(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, PetscReal u_tShift, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar g3[])
    {
    
      const PetscReal Re    = REYN;
      const PetscInt  Ncomp = dim;
      PetscInt        compI, d;
    
      for (compI = 0; compI < Ncomp; ++compI) {
    
        for (d = 0; d < dim; ++d) g3[((compI * Ncomp + compI) * dim + d) * dim + d] = 1.0 / Re;
    
    static PetscErrorCode ProcessOptions(MPI_Comm comm, AppCtx *options)
    {
    
      PetscFunctionBeginUser;
    
      PetscOptionsBegin(comm, "", "Navier-Stokes Equation Options", "DMPLEX");
    
      PetscCall(PetscOptionsInt("-mms", "The manufactured solution to use", "ex46.c", options->mms, &options->mms, NULL));
    
      PetscOptionsEnd();
    
      PetscFunctionReturn(PETSC_SUCCESS);
    
    static PetscErrorCode CreateMesh(MPI_Comm comm, DM *dm, AppCtx *ctx)
    {
    
      PetscFunctionBeginUser;
    
      PetscCall(DMCreate(comm, dm));
      PetscCall(DMSetType(*dm, DMPLEX));
      PetscCall(DMSetFromOptions(*dm));
      PetscCall(DMViewFromOptions(*dm, NULL, "-dm_view"));
    
      PetscFunctionReturn(PETSC_SUCCESS);
    
    static PetscErrorCode SetupProblem(DM dm, AppCtx *ctx)
    {
    
      const PetscInt id = 1;
    
    
      PetscFunctionBeginUser;
    
      PetscCall(DMGetDimension(dm, &dim));
      PetscCall(DMGetDS(dm, &ds));
      PetscCall(DMGetLabel(dm, "marker", &label));
    
      case 2:
        switch (ctx->mms) {
        case 1:
    
          PetscCall(PetscDSSetResidual(ds, 0, f0_mms1_u, f1_u));
          PetscCall(PetscDSSetResidual(ds, 1, f0_p, f1_p));
    
          PetscCall(PetscDSSetJacobian(ds, 0, 0, g0_uu, g1_uu, NULL, g3_uu));
    
          PetscCall(PetscDSSetJacobian(ds, 0, 1, NULL, NULL, g2_up, NULL));
    
          PetscCall(PetscDSSetJacobian(ds, 1, 0, NULL, g1_pu, NULL, NULL));
    
          PetscCall(PetscDSSetExactSolution(ds, 0, mms1_u_2d, ctx));
          PetscCall(PetscDSSetExactSolution(ds, 1, mms1_p_2d, ctx));
    
          PetscCall(DMAddBoundary(dm, DM_BC_ESSENTIAL, "wall", label, 1, &id, 0, 0, NULL, (void (*)(void))mms1_u_2d, NULL, ctx, NULL));
    
          PetscCall(PetscDSSetResidual(ds, 0, f0_mms2_u, f1_u));
          PetscCall(PetscDSSetResidual(ds, 1, f0_p, f1_p));
    
          PetscCall(PetscDSSetJacobian(ds, 0, 0, g0_uu, g1_uu, NULL, g3_uu));
    
          PetscCall(PetscDSSetJacobian(ds, 0, 1, NULL, NULL, g2_up, NULL));
    
          PetscCall(PetscDSSetJacobian(ds, 1, 0, NULL, g1_pu, NULL, NULL));
    
          PetscCall(PetscDSSetExactSolution(ds, 0, mms2_u_2d, ctx));
          PetscCall(PetscDSSetExactSolution(ds, 1, mms2_p_2d, ctx));
    
          PetscCall(DMAddBoundary(dm, DM_BC_ESSENTIAL, "wall", label, 1, &id, 0, 0, NULL, (void (*)(void))mms2_u_2d, NULL, ctx, NULL));
    
        default:
          SETERRQ(PETSC_COMM_WORLD, PETSC_ERR_ARG_OUTOFRANGE, "Invalid MMS %" PetscInt_FMT, ctx->mms);
    
      default:
        SETERRQ(PETSC_COMM_WORLD, PETSC_ERR_ARG_OUTOFRANGE, "Invalid dimension %" PetscInt_FMT, dim);
    
      PetscFunctionReturn(PETSC_SUCCESS);
    
    static PetscErrorCode SetupDiscretization(DM dm, AppCtx *ctx)
    {
    
      MPI_Comm  comm;
      DM        cdm = dm;
      PetscFE   fe[2];
      PetscInt  dim;
      PetscBool simplex;
    
    
      PetscFunctionBeginUser;
    
      PetscCall(PetscObjectGetComm((PetscObject)dm, &comm));
    
      PetscCall(DMGetDimension(dm, &dim));
      PetscCall(DMPlexIsSimplex(dm, &simplex));
      PetscCall(PetscFECreateDefault(comm, dim, dim, simplex, "vel_", PETSC_DEFAULT, &fe[0]));
    
      PetscCall(PetscObjectSetName((PetscObject)fe[0], "velocity"));
    
      PetscCall(PetscFECreateDefault(comm, dim, 1, simplex, "pres_", PETSC_DEFAULT, &fe[1]));
      PetscCall(PetscFECopyQuadrature(fe[0], fe[1]));
    
      PetscCall(PetscObjectSetName((PetscObject)fe[1], "pressure"));
    
      /* Set discretization and boundary conditions for each mesh */
    
      PetscCall(DMSetField(dm, 0, NULL, (PetscObject)fe[0]));
      PetscCall(DMSetField(dm, 1, NULL, (PetscObject)fe[1]));
    
      PetscCall(DMCreateDS(dm));
      PetscCall(SetupProblem(dm, ctx));
    
      while (cdm) {
        PetscObject  pressure;
        MatNullSpace nsp;
    
    
        PetscCall(DMGetField(cdm, 1, NULL, &pressure));
        PetscCall(MatNullSpaceCreate(PetscObjectComm(pressure), PETSC_TRUE, 0, NULL, &nsp));
    
        PetscCall(PetscObjectCompose(pressure, "nullspace", (PetscObject)nsp));
    
        PetscCall(MatNullSpaceDestroy(&nsp));
    
        PetscCall(DMCopyDisc(dm, cdm));
        PetscCall(DMGetCoarseDM(cdm, &cdm));
    
      PetscCall(PetscFEDestroy(&fe[0]));
      PetscCall(PetscFEDestroy(&fe[1]));
    
      PetscFunctionReturn(PETSC_SUCCESS);
    
    static PetscErrorCode MonitorError(TS ts, PetscInt step, PetscReal crtime, Vec u, void *ctx)
    {
    
      PetscSimplePointFn *funcs[2];
      void               *ctxs[2];
      DM                  dm;
      PetscDS             ds;
      PetscReal           ferrors[2];
    
    
      PetscFunctionBeginUser;
    
      PetscCall(TSGetDM(ts, &dm));
      PetscCall(DMGetDS(dm, &ds));
      PetscCall(PetscDSGetExactSolution(ds, 0, &funcs[0], &ctxs[0]));
      PetscCall(PetscDSGetExactSolution(ds, 1, &funcs[1], &ctxs[1]));
      PetscCall(DMComputeL2FieldDiff(dm, crtime, funcs, ctxs, u, ferrors));
    
      PetscCall(PetscPrintf(PETSC_COMM_WORLD, "Timestep: %04d time = %-8.4g \t L_2 Error: [%2.3g, %2.3g]\n", (int)step, (double)crtime, (double)ferrors[0], (double)ferrors[1]));
    
      PetscFunctionReturn(PETSC_SUCCESS);
    
    int main(int argc, char **argv)
    {
    
      PetscFunctionBeginUser;
    
      PetscCall(PetscInitialize(&argc, &argv, NULL, help));
      PetscCall(ProcessOptions(PETSC_COMM_WORLD, &ctx));
      PetscCall(CreateMesh(PETSC_COMM_WORLD, &dm, &ctx));
      PetscCall(DMSetApplicationContext(dm, &ctx));
      PetscCall(SetupDiscretization(dm, &ctx));
      PetscCall(DMPlexCreateClosureIndex(dm, NULL));
    
      PetscCall(DMCreateGlobalVector(dm, &u));
      PetscCall(VecDuplicate(u, &r));
    
      PetscCall(TSCreate(PETSC_COMM_WORLD, &ts));
      PetscCall(TSMonitorSet(ts, MonitorError, &ctx, NULL));
      PetscCall(TSSetDM(ts, dm));
      PetscCall(DMTSSetBoundaryLocal(dm, DMPlexTSComputeBoundary, &ctx));
      PetscCall(DMTSSetIFunctionLocal(dm, DMPlexTSComputeIFunctionFEM, &ctx));
      PetscCall(DMTSSetIJacobianLocal(dm, DMPlexTSComputeIJacobianFEM, &ctx));
      PetscCall(TSSetExactFinalTime(ts, TS_EXACTFINALTIME_STEPOVER));
      PetscCall(TSSetFromOptions(ts));
      PetscCall(DMTSCheckFromOptions(ts, u));
    
        PetscSimplePointFn *funcs[2];
        void               *ctxs[2];
        PetscDS             ds;
    
        PetscCall(DMGetDS(dm, &ds));
        PetscCall(PetscDSGetExactSolution(ds, 0, &funcs[0], &ctxs[0]));
        PetscCall(PetscDSGetExactSolution(ds, 1, &funcs[1], &ctxs[1]));
        PetscCall(DMProjectFunction(dm, 0.0, funcs, ctxs, INSERT_ALL_VALUES, u));
    
      PetscCall(TSSolve(ts, u));
      PetscCall(VecViewFromOptions(u, NULL, "-sol_vec_view"));
    
      PetscCall(VecDestroy(&u));
      PetscCall(VecDestroy(&r));
      PetscCall(TSDestroy(&ts));
      PetscCall(DMDestroy(&dm));
      PetscCall(PetscFinalize());
    
    Matthew Knepley's avatar
    Matthew Knepley committed
    
    /*TEST
    
      # Full solves
      test:
        suffix: 2d_p2p1_r1
    
        filter: sed -e "s~ATOL~RTOL~g" -e "s~ABS~RELATIVE~g"
    
        args: -dm_refine 1 -vel_petscspace_degree 2 -pres_petscspace_degree 1 \
              -ts_type beuler -ts_max_steps 10 -ts_dt 0.1 -ts_monitor -dmts_check \
              -snes_monitor_short -snes_converged_reason \
              -ksp_monitor_short -ksp_converged_reason \
              -pc_type fieldsplit -pc_fieldsplit_type schur -pc_fieldsplit_schur_fact_type full \
                -fieldsplit_velocity_pc_type lu \
                -fieldsplit_pressure_ksp_rtol 1.0e-10 -fieldsplit_pressure_pc_type jacobi
    
    
    Matthew Knepley's avatar
    Matthew Knepley committed
      test:
        suffix: 2d_q2q1_r1
    
        filter: sed -e "s~ATOL~RTOL~g" -e "s~ABS~RELATIVE~g" -e "s~ 0\]~ 0.0\]~g"
    
        args: -dm_plex_simplex 0 -dm_refine 1 -vel_petscspace_degree 2 -pres_petscspace_degree 1 \
              -ts_type beuler -ts_max_steps 10 -ts_dt 0.1 -ts_monitor -dmts_check \
              -snes_monitor_short -snes_converged_reason \
              -ksp_monitor_short -ksp_converged_reason \
              -pc_type fieldsplit -pc_fieldsplit_type schur -pc_fieldsplit_schur_fact_type full \
                -fieldsplit_velocity_pc_type lu \
                -fieldsplit_pressure_ksp_rtol 1.0e-10 -fieldsplit_pressure_pc_type jacobi