Skip to content
Snippets Groups Projects
Commit 0f62d027 authored by stephematician's avatar stephematician
Browse files

Tidy and fix spelling in documentation

Incorrect spelling of Breiman corrected
Added Breiman reference to README
Add URLs to package docs
Bump version number
parent e9f8a585
No related branches found
No related tags found
No related merge requests found
Package: literanger
Title: Random Forests for Multiple Imputation Based on 'ranger'
Version: 0.0.1
Version: 0.0.2
Authors@R:
c(person("Stephen", "Wade",
email="stephematician@gmail.com",
......
# literanger 0.0.1
literanger NEWS
===============
# version 0.0.2
Performance enhancements
- Faster (correct) test for number of candidate values in node splitting.
- Remove lock on log gamma (beta splitting rule).
Bug-fixes
- Fix container overrun and incorrect (unweighted) sampling without
replacement.
# version 0.0.1
This is the initial release of literanger, a refactoring and adaptation of the
ranger package <https://github.com/imbs-hl/ranger> for random forests. The
......@@ -11,7 +25,6 @@ for missing data imputation in the presence of interaction effects.
_Computational statistics & data analysis_, 72, 92-104.
Currently supports:
- Classification and regression trees/forests.
- Prediction types:
- Conventional 'bagged' prediction (most frequent value or mean).
......
......@@ -136,6 +136,8 @@
#'
#' @references
#'
#' - Breiman, L. (2001). Random forests. _Machine Learning_, 45, 5-32.
#' \doi{10.1023/A:1010933404324}.
#' - Cieslak, D. A., Hoens, T. R., Chawla, N. V., & Kegelmeyer, W. P. (2012).
#' Hellinger distance decision trees are robust and skew-insensitive. _Data
#' Mining and Knowledge Discovery_, 24, 136-158.
......
......@@ -10,7 +10,7 @@ _Stephen Wade_
`literanger` is an adaption of the [`ranger`][ranger_cran] R package for
training and predicting from random forest models within multiple imputation
algorithms. `ranger` is a fast implementation of random forests
([Breiman, 2001][brieman2001_doi]) or recursive partitioning, particularly
([Breiman, 2001][breiman2001_doi]) or recursive partitioning, particularly
suited for high dimensional data ([Wright et al, 2017][wright2017_doi]).
`literanger` enables random forests to be embedded in the fully conditional
specification framework for multiple imputation known as 'Multiple Imputation
......@@ -116,7 +116,7 @@ forests for high dimensional data in C++ and R. _Journal of Statistical
Software_, 77(i01), pp. 1-17.
[doi:10.18637/jss.v077.i01](https://doi.org/10.18637/jss.v077.i01).
[brieman2001_doi]: https://doi.org/10.1023/A:1010933404324
[breiman2001_doi]: https://doi.org/10.1023/A:1010933404324
[doove2014_doi]: https://doi.org/10.1016/j.csda.2013.10.025
[vanbuuren2007_doi]: https://doi.org/10.1177/0962280206074463
[wright2017_doi]: https://doi.org/10.18637/jss.v077.i01
......
......@@ -112,6 +112,8 @@ http://www.imbs-luebeck.d
\references{
\itemize{
\item Breiman, L. (2001). Random forests. \emph{Machine Learning}, 45, 5-32.
\doi{10.1023/A:1010933404324}.
\item Cieslak, D. A., Hoens, T. R., Chawla, N. V., & Kegelmeyer, W. P. (2012).
Hellinger distance decision trees are robust and skew-insensitive. \emph{Data
Mining and Knowledge Discovery}, 24, 136-158.
......@@ -139,6 +141,14 @@ variable selection for random survival forests using maximally selected
rank statistics. \emph{Statistics in medicine}, 36(8), 1272-1284.
\doi{10.1002/sim.7212}.
}
}
\seealso{
Useful links:
\itemize{
\item \url{https://github.com/stephematician/literanger}
\item Report bugs at \url{https://github.com/stephematician/literanger/issues}
}
}
\author{
Stephen Wade \href{mailto:stephematician@gmail.com}{stephematician@gmail.com}, Marvin N Wright (original
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment