Skip to content
Snippets Groups Projects

Repository graph

You can move around the graph by using the arrow keys.
Select Git revision
  • develop
  • main default protected
  • vanbelle_bck
  • v0.4.0
  • v0.3.2
  • v0.3.1
  • v0.2
  • v0.1
  • v0.0.3
9 results
Created with Raphaël 2.2.013Feb10Dec9529Nov27129Oct127Sep262524121129Apr2615Mar14131211729Feb28272630Jan16Nov2130Oct261327Sep5Jul425Jan22Apr2120191518Mar25Feb2221181725Jan14Dec13327Oct27Sep23Augupdate README: re-organization, more textdevelopdevelopstart developmentupdate readmev0.4.0 mainv0.4.0 mainfix cran check NOTESadd test for kappa_test_corradd depression data from McKenzie (1996) / Vanbelle (2008)kappa_test_corr: bug fix: build kappaF_args correctly as list-of-listskappa_test_corr: allow to give kappa-function and fappa-arguments per group, by allowing arguments kappaF= to be list of functions and kappaF_args= to be list of listsupdate docskappa_test_corr: use vapply, do.calladd kappa_test_corr()reorganize code: new separate file for inferencenew data agreem_binary: three independent agreement studies on binary scalestart developmentDESCRIPTION: drop Remotes fieldv0.3.2v0.3.2update news and cran-commentskappa2: return also nbr of categoriescran commentsv0.3.1v0.3.1update READMEdoc: drop non-ascii characterkappam_gold: handle ratingScale, return number of categories as wellkappa_vanbelle: add categories in outputuse underscore naming convention for functionsmodify stagingData datasimplified test codevanbelle: update source/referencevanbelle: drop last reference to bootstrap-packagerename kappaVanbelle to kappam.vanbelle()add diagnoses data (including permutation of raters per subject as there is no rater-ID but randomly selected raters)more docs: examplesadd examplesimplement jackknifemore documentationkappam.gold: raters = nbr of tested raters (excluding reference rater)bug fix: [ needs drop=FALSEkappam.fleiss, bug fix: stay matrixkappam.fleiss: implement jackknifekappam.fleiss: build return obj earlyswitch back to common format of count tables and have nCat rows: nCat x nSj resp. nCat x nrFleiss, conger variant: use alternative way to calculate chanceP (hopefully best suited for unbalanced data)
Loading