word2vec
Projects with this topic
-
A simple Python program to generate (lowercase) embeddings, from someone (me) who really does not have much experience using Python.
Updated -
Evaluation of various deep learning models for sentiment analysis You are given the reviews dataset. These are 194439 amazon reviews for cell phones and accessories taken from https://jmcauley.ucsd.edu/data/amazon/ Use the “reviewText” and “overall” fields from this file. The goal is to predict the rating given the review by modeling it as a multi-class classification problem. • Take the first 70% dataset for train, next 10% for validation/development, and remaining 20% for test. • Recurrent neural networks • RNNs: Train a single directional RNN with L layers. Vary the number of layers (as 1,2,3,4) and also size of layers (20, 50, 100, 200). Report accuracy on test set. • LSTMs: Train a single directional LSTM with L layers. Vary the number of layers (as 1,2,3,4) and also size of layers (20, 50, 100, 200). Report accuracy on test set. • BiLSTM: Train a single directional RNN with L layers. Vary the number of layers (as 1,2,3,4) and also size of layers (20, 50, 100, 200). Report accuracy on test set.
Updated -
Machine Learning - Content Based Recommendation System
Updated -
Extract most relevant Keywords from Web-page to the given list of Sentences or Words
Updated -
The project uses natural language processing to automatically assess causal diagrams filled out by students based on semantic distance from the model causal diagram provided.
Updated -
A repo for messing around with Google's word2vec model. Inspired by this computerphile video.
Updated -
a Data Semantics Project
Updated -
Simple text classification project on 20news data, using word embedding methods for text representation and supervised machine learning algorithms to classify.
Updated -
This is the repository for my final year project. The title of the project is Deep Learning of Word Embeddings for semantic search.
Updated -
-
Feature extractor to build an XML file with the required features for running ReelOut with the MSCoco Imageset.
Updated -
Machine translation system using word2vec word embeddings and unsupervised learning to produce translations between languages. Developed as part of a summer internship program with QUT's partner university, Hokkaido University, in Japan.
Updated