# -*- coding: utf-8 -*- """ CAUTION: Running this script can take very long! """ from numpy import arange from yade import pack import pylab # define the section shape as polygon in 2d; repeat first point at the end to close the polygon sq2=sqrt(2) poly=((3+.1,0),(3+0,.1),(3+sq2,.1+sq2),(3+.1+sq2,sq2),(3+.1,0)) #pylab.plot(*zip(*poly)); pylab.xlim(xmin=0); pylab.grid(); pylab.title('Meridian of the revolution surface\n(close to continue)'); pylab.gca().set_aspect(aspect='equal',adjustable='box'); pylab.show() thetas=arange(0,pi/8,pi/24) pts=pack.revolutionSurfaceMeridians([poly for theta in thetas],thetas,origin=Vector3(-4,0,-1),orientation=Quaternion((0,1,0),0.0)) surf=pack.sweptPolylines2gtsSurface(pts,capStart=True,capEnd=True,threshold=1e-4) O.bodies.append(pack.gtsSurface2Facets(surf,color=(1,0,1))) # fill this solid with triaxial packing; it will compute minimum-volume oriented bounding box # to minimize the number of throw-away spheres. # It does away with about 3k spheres for radius 3e-2 sp1=SpherePack() sp1=pack.randomDensePack(pack.inGtsSurface(surf),radius=3e-2,rRelFuzz=1e-1,memoizeDb='/tmp/gts-triax.sqlite',returnSpherePack=True) sp1.toSimulation() # translate the surface away and pack it again with sphere, but without the oriented bounding box (useOBB=False) # Here, we need 20k spheres (with more or less the same result) surf.translate(0,0,1); O.bodies.append(pack.gtsSurface2Facets(surf,color=(1,0,0))) sp2=SpherePack() sp2=pack.randomDensePack(pack.inGtsSurface(surf),radius=3e-2,rRelFuzz=1e-1,memoizeDb='/tmp/gts-triax-packings.sqlite',useOBB=False,returnSpherePack=True) sp2.toSimulation() from yade import qt qt.View()