

Dear GitLab:

A Dev’s Devotion
A technical love letter by Doby

Table of Contents
Introduction ...

. 1

GitLab Functional Analysis .. 2

GitLab vs GitHub Comparison 5

C4 Architecture Diagrams 6

Data Flow Diagrams (DFDs) 9

ERD – Entity Relationship Diagram 12

Use Case Diagram ... 13

Introduction

This report is not just technical documentation; it’s a personal journey.

GitLab has become the heart of my development process: the space where I

plan, code, build, and deploy. From my first CI/CD pipeline to publishing

real-world projects like Micro TCU-9 and Sentinel Pi, every push, merge,

and release has meant more than just code.

This document details GitLab’s platform capabilities, DevSecOps pipeline,

data structures, and user interactions through structured diagrams and

analysis. It’s my way of saying thank you to the platform that didn’t just

support my work but helped shape the developer I’m becoming.

🧠 GitLab Functional Analysis

📁 Repository Management

GitLab offers a full-featured Git repository management system that

empowers both individuals and teams to collaborate efficiently. It

supports all standard Git operations such as clone, commit, push,

pull, and branching. GitLab's repository tools provide a reliable

foundation for source code control with a powerful web UI that

includes:

• Branch Management: Developers can easily create, manage, and

protect branches. GitLab supports branch protection rules that

prevent unwanted changes to critical branches like main or

production.

• Merge Requests (MRs): GitLab’s merge request system enables

code reviews, discussions, and approvals before code is

merged. This ensures code quality and collaboration.

• Commit History and Tags: Detailed logs and version tracking

are maintained with commit messages, change diffs, and tagged

releases.

• .gitignore and File Templates: GitLab supports reusable file

templates, improving consistency across projects.

⚙️ CI/CD Pipelines

GitLab's built-in CI/CD system is one of its most powerful features.

It uses a declarative YAML file (.gitlab-ci.yml) to define automated

workflows that can include multiple stages and jobs such as build,

test, and deploy. Key highlights:

• Ease of Setup: Built directly into each GitLab project, CI/CD

pipelines require no external services.

• Stages and Jobs: Workflows can be broken into logical stages

with conditional job execution, parallelism, and matrix

builds.

• Runners: Jobs are executed using GitLab Runners, which can be

shared or self-hosted.

• Deployment Options: From GitLab Pages to Docker containers and

cloud services, GitLab simplifies deployment through automated

scripts and environments.

• Artifact Storage: CI/CD outputs (like executables, logs, or

coverage reports) can be saved and referenced between jobs.

🔄 DevSecOps Lifecycle

GitLab excels as an all-in-one DevSecOps platform, integrating the

full software development lifecycle into a single UI. The platform

supports every phase of DevOps:

1. Plan: Create epics, issues, milestones, and boards to manage

agile workflows.

2. Create: Use built-in IDE or connect local editors to commit,

edit, and version control.

3. Verify: Run automated unit tests and code linting via CI/CD.

4. Secure: GitLab includes out-of-the-box static and dynamic

application security testing (SAST, DAST), dependency

scanning, and license compliance.

5. Package: Host private container images, npm packages, and

Maven artifacts.

6. Release: Use pipelines to manage version tagging and release

cycles.

7. Configure: Environments and Kubernetes integration make

configuration seamless.

8. Monitor: GitLab integrates with Prometheus and other

monitoring tools for performance visibility and error

tracking.

This lifecycle integration removes the need for external plugins or

manual connections, reducing friction for solo developers and teams

alike.

🧩 Integration Tools

GitLab's platform includes auxiliary tools that elevate productivity

and collaboration:

• Issue Tracking: Advanced issue tracking includes labels,

assignees, time tracking, and automation rules.

• Boards and Milestones: Visual boards allow teams to plan and

track work in real time.

• Snippets and Wikis: Code snippets can be shared across

projects. Wikis provide rich documentation space per project.

• Container and Package Registries: GitLab hosts your Docker

images and packages directly within the project.

• API Access: GitLab’s REST and GraphQL APIs allow for deep

automation and customization.

• Visibility Settings: Projects can be made public, internal, or

private—supporting flexible sharing strategies.

GitLab vs GitHub Comparison

Feature GitLab GitHub

CI/CD
Native and built-in CI/CD with

YAML config

Requires GitHub

Actions setup

Wiki +

Snippets
Integrated into each project

Available, but as

separate features

Pages

Hosting

Built-in GitLab Pages with

CI/CD integration

GitHub Pages, limited

to static sites

DevSecOps

Tools

Integrated SAST, DAST,

dependency & license scans

External tools needed

or paid plans

Project

Visibility

Public, private, internal

(granular control)
Public or private

Project

Management

Agile boards, milestones, and

epics

Boards via Projects

(less integrated)

Container

Registry

Fully hosted per-project

Docker registry

GitHub Container

Registry (separate)

Why I chose GitLab: “As a solo dev, I wanted fewer steps, less

friction, and full visibility. GitLab gives me all of that in one

space. It feels like a lab, not just a repo.”

Diagrams

C4 Architecture Diagrams

• C4 Level 0 – System Context Diagram

This diagram provides a high-level overview of how Doby (the

developer) interacts with the GitLab platform within their

development ecosystem. It identifies external tools and deployed

products, clarifying the system's role and boundaries.

• Purpose:

To show how GitLab fits into Doby’s development workflow and what

major systems or tools it interfaces with.

• Key Elements:

• Actor: Doby (Developer)

• System: GitLab Platform

• External Tools: VS Code, Terminal, Draw.io

• Outputs: Deployed projects including:

o Micro TCU-9 (Electron app)

o Sentinel Pi (Python scripts)

o Quantum City Game (Godot)

o Portfolio site via GitLab Pages

• C4 Level 1 – Container Diagram

This diagram zooms into the GitLab platform to illustrate its major

internal containers—essentially, the main services and environments

that support development and deployment.

• Purpose:

To break down GitLab into functional containers and show how Doby's

local development environment connects with each part of the system.

• Key Elements:

• Containers:

o Web Interface: for interacting with repositories, issues,

and merge requests

o CI/CD Engine: where .gitlab-ci.yml pipelines are executed

o GitLab Pages Hosting: deploys portfolio sites and

documentation

o Container & Package Registry: hosts Docker images,

artifacts, and packages

• External Input: Code is authored and pushed via local tools

(VS Code, Terminal)

• C4 Level 2 – Component Diagram (Example: Micro TCU-9)

This diagram focuses on the internal architecture of the Micro TCU-9

project as structured within its GitLab repository. It illustrates

the major components involved in the development, packaging, and

delivery of the application — highlighting both GitLab’s role and

external hosting on Itch.io.

🎯 Purpose

To visualize how Micro TCU-9's source code, build logic, and

deployment workflow are organized across GitLab and external

platforms.

🔧 Key Components

• Frontend (Electron + HTML/CSS/JS):
 Manages the user interface, interactions, and visual elements

like timers, task boards, and stickers.

• Backend (Node.js + IPC + Storage):
 Handles logic processing, communication between modules, and

persistent storage for user data and settings.

• CI/CD Pipeline (.gitlab-ci.yml):
 Automates validation, basic build preparation, and version

tracking. Due to .exe upload limitations, final packaging is

done locally and hosted elsewhere.

• Assets & Icons:
 Custom visual elements including app icons and media files

embedded into the final build.

• External Runtime:
 The Electron runtime environment installed on the end user's

machine, required to execute the packaged desktop app.

• Target OS:
 Designed specifically for Windows as a .exe desktop

application.

• Itch.io Hosting:
 Serves as the external distribution platform for the

packaged .exe, allowing users to safely download the app.

• End User:
 Interacts with the application post-download, benefiting from

its features and accessibility enhancements.

📝 Note: While GitLab manages the codebase and pipeline automation,

the final executable is uploaded manually to Itch.io for

distribution due to file upload restrictions.

• DFD Level 0 – Context-Level Diagram

This high-level diagram illustrates the overall data flow for the

Micro TCU-9 application. It treats the entire system as a single

black-box process and focuses on how information moves between the

developer, the development platform (GitLab), and the end users.

🎯 Purpose

To provide a bird’s-eye view of Micro TCU-9’s lifecycle — from

development to distribution — using a single abstracted process.

🧩 Key Elements

• External Entity:
 Doby (Developer) – creates and updates Micro TCU-9 code.

• Process:
 “Build and Distribute Micro TCU-9” – the central system

process that handles development and delivery.

• Data Stores/Outputs:

o GitLab Repository – stores the source code and project

files.

o (Optional) CI/CD Pipeline – used for building artifacts

(not used to host .exe in this case).

o Executable File – manually uploaded and hosted on

Itch.io.

o User Device – downloads and runs the .exe application.

🔁 Data Flow Overview

1. The developer pushes code to the GitLab repository.

2. GitLab may optionally trigger a CI/CD pipeline for builds (not

for publishing).

3. The developer manually packages and uploads the final .exe to

Itch.io.

4. Users download the application from Itch.io and run it on

their local devices.

• DFD Level 1 – High-Level Internal Workflow

🎯 Purpose: This diagram breaks down the Micro TCU-9 lifecycle into

internal sub-processes, focusing on the path from development to

deployment.

🧩 Key Processes:

1. Edit Code – Doby writes and modifies source code using local

tools (e.g., VS Code).

2. Commit to GitLab – Code is pushed to the GitLab repository.

3. Trigger CI/CD Pipeline – If enabled, .gitlab-ci.yml initiates

the pipeline.

4. Build Executable – Code is compiled and packaged into a .exe

application.

5. Publish Artifact – Final .exe is manually uploaded to Itch.io.

6. User Device – End users download and run the application.

 Flow: The development process starts with local editing, passes

through version control and optional automation, and ends with

distribution and user execution.

• DFD Level 2 – Detailed CI/CD Pipeline Breakdown

This diagram zooms into the CI/CD Pipeline process (step 3 from

Level 1), detailing each task performed during automation that

prepares your code for distribution.

🎯 Purpose:
 To explain the step-by-step breakdown of the GitLab CI/CD build

process as defined in .gitlab-ci.yml, leading up to the artifact

upload.

🧩 Key Sub-Processes:

1. Clone Repository – Fetches the latest Micro TCU-9 code from

GitLab.

2. Install Dependencies – Installs required packages (e.g., Node

modules, Electron).

3. Run Tests (Optional) – Executes any automated tests or

linters, if configured.

4. Package Executable – Compiles and packages the application

into a Windows .exe.

5. Upload to Itch.io – Manually upload or via API to make the

executable available for users.

🔁 Flow:
 Once changes are pushed, GitLab triggers the pipeline; each

subprocess outputs to the next, culminating in the executable being

uploaded to Itch.io for user download.

• ERD – Entity Relationship Diagram: GitLab Project Structure

The Entity Relationship Diagram (ERD) represents the core data

entities and relationships that structure your GitLab projects and

workflows. This model reflects how different parts of a project

interact and how they’re connected to contributors and processes.

Purpose:

To define and visualize the underlying data model of a typical

GitLab-based project — including contributors, files, repositories,

and automation workflows.

Key Entities:

• Project
 Contains metadata like name, visibility, programming

language, and project ID.

o Attributes: project_id, name, language, visibility

• File
 Represents individual files within a project (code, assets,

config).

o Attributes: file_id, file_name, file_type, last_modified

o Relationship: Each project can contain many files.

• Contributor
 Users with access to the project (e.g., Doby, assistants,

collaborators).

o Attributes: user_id, name, role, email

o Relationship: Contributors can work on multiple projects.

• Pipeline
 Represents automated processes triggered by changes (CI/CD).

o Attributes: pipeline_id, status, stage, triggered_by

o Relationship: Each project can have multiple pipelines.

This ERD lays the groundwork for understanding how development,

collaboration, and deployment are managed in a GitLab environment.

• Use Case Diagram – GitLab Developer Actions

The Use Case Diagram illustrates how the Developer interacts with

GitLab’s functionality throughout the lifecycle of a software

project. It focuses on the user goals and actions rather than

technical structure.

Purpose:

To highlight the specific tasks and interactions that the developer

performs within the GitLab ecosystem, aligned with the processes

visualized in the ERD and C4/DFD diagrams.

Primary Actor:

• Developer (Doby)

Use Cases:

1. Create Project – Initiate a new GitLab repository for

organizing code and tasks.

2. Push Code – Upload files and commit changes using Git.

3. Run CI/CD Pipeline – Trigger automated jobs defined

in .gitlab-ci.yml.

4. Download Artifact – Access and download build outputs

(e.g., .exe files).

5. Review Code / Merge Request – View, review, and merge

contributions via GitLab's collaboration tools.

📚 Conclusion: What GitLab Taught Me

Through GitLab, I gained more than technical knowledge—I learned how

to structure ideas, version my dreams, and deploy my own creations

confidently into the world. With each project I launched, GitLab

empowered me to:

• Build structure and professionalism into every creative idea

• Understand and trust continuous delivery systems

• Navigate DevOps tools with ease and excitement

• Showcase my skills through real-world portfolio deployments

• Own the full development lifecycle from planning to monitoring

With deepest gratitude,

Doby

	Table of Contents
	Introduction
	🧠 GitLab Functional Analysis
	📁 Repository Management
	⚙️ CI/CD Pipelines
	🔄 DevSecOps Lifecycle
	🧩 Integration Tools

	GitLab vs GitHub Comparison
	Diagrams
	C4 Architecture Diagrams
	• Purpose:
	• Key Elements:
	• Purpose:
	• Key Elements:
	🎯 Purpose
	🔧 Key Components

	• DFD Level 0 – Context-Level Diagram
	🎯 Purpose
	🧩 Key Elements
	🔁 Data Flow Overview

	• DFD Level 1 – High-Level Internal Workflow
	• DFD Level 2 – Detailed CI/CD Pipeline Breakdown

	• ERD – Entity Relationship Diagram: GitLab Project Structure
	Purpose:
	Key Entities:

	• Use Case Diagram – GitLab Developer Actions
	Purpose:
	Primary Actor:
	Use Cases:

	📚 Conclusion: What GitLab Taught Me

