Dear GitLab:
A Dev’s Devotion

A technical love letter by Doby

I o o Yo 10l s e 1
.1

GitLab Functional Analysis ...ueiiiiiieiiieneereionserronssssnnsnsns 2
GitLab vs GitHub Comparisoneeeeerrerrrrooeennnns 5

C4 Architecture Diagramseeeiiiinseeeeeeeesonnnssnssnnnnnss 6
Data Flow Diagrams (DFDS) . iuiveveeeroenenononnssosoanonnnnsns 9

ERD - Entity Relationship Diagramciiiiieevenns 12

Use Case Diagramceeitiieeteenneroosssonoesossnesssonsssssnnsas 13

This report is not just technical documentation; it’s a personal journey.
GitLab has become the heart of my development process: the space where I
plan, code, build, and deploy. From my first CI/CD pipeline to publishing
real-world projects like Micro TCU-9 and Sentinel Pi, every push, merge,
and release has meant more than just code.

This document details GitlLab’s platform capabilities, DevSecOps pipeline,
data structures, and user interactions through structured diagrams and
analysis. It’s my way of saying thank you to the platform that didn’t just
support my work but helped shape the developer I’m becoming.

@

B

GitLab offers a full-featured Git repository management system that
empowers both individuals and teams to collaborate efficiently. It
supports all standard Git operations such as clone, commit, push,
pull, and branching. GitLab's repository tools provide a reliable
foundation for source code control with a powerful web UI that
includes:

e Branch Management: Developers can easily create, manage, and
protect branches. GitLab supports branch protection rules that
prevent unwanted changes to critical branches like main or
production.

e Merge Requests (MRs): GitlLab’s merge request system enables
code reviews, discussions, and approvals before code is
merged. This ensures code quality and collaboration.

e Commit History and Tags: Detailed logs and version tracking
are maintained with commit messages, change diffs, and tagged
releases.

e .gitignore and File Templates: GitlLab supports reusable file
templates, improving consistency across projects.

GitLab's built-in CI/CD system is one of its most powerful features.
It uses a declarative YAML file (.gitlab-ci.yml) to define automated

workflows that can include multiple stages and jobs such as build,
test, and deploy. Key highlights:

e Ease of Setup: Built directly into each GitLab project, CI/CD
pipelines require no external services.

e Stages and Jobs: Workflows can be broken into logical stages
with conditional job execution, parallelism, and matrix
builds.

e Runners: Jobs are executed using GitLab Runners, which can be
shared or self-hosted.

e Deployment Options: From GitLab Pages to Docker containers and
cloud services, GitLab simplifies deployment through automated
scripts and environments.

e Artifact Storage: CI/CD outputs (like executables, logs, or
coverage reports) can be saved and referenced between jobs.

&

GitLab excels as an all-in-one DevSecOps platform, integrating the
full software development lifecycle into a single UI. The platform
supports every phase of DevOps:

1. Plan: Create epics, issues, milestones, and boards to manage
agile workflows.

2. Create: Use built-in IDE or connect local editors to commit,
edit, and version control.

3. Verify: Run automated unit tests and code linting via CI/CD.

4. Secure: GitLab includes out-of-the-box static and dynamic
application security testing (SAST, DAST), dependency
scanning, and license compliance.

5. Package: Host private container images, npm packages, and
Maven artifacts.

6. Release: Use pipelines to manage version tagging and release
cycles.

7. Configure: Environments and Kubernetes integration make
configuration seamless.

8. Monitor: GitLab integrates with Prometheus and other
monitoring tools for performance visibility and error
tracking.

This lifecycle integration removes the need for external plugins or
manual connections, reducing friction for solo developers and teams
alike.

o

GitLab's platform includes auxiliary tools that elevate productivity
and collaboration:

e Issue Tracking: Advanced issue tracking includes labels,
assignees, time tracking, and automation rules.

e Boards and Milestones: Visual boards allow teams to plan and
track work in real time.

e Snippets and Wikis: Code snippets can be shared across
projects. Wikis provide rich documentation space per project.

e Container and Package Registries: GitLab hosts your Docker
images and packages directly within the project.

e API Access: GitlLab’s REST and GraphQL APIs allow for deep
automation and customization.

e Visibility Settings: Projects can be made public, internal, or
private—supporting flexible sharing strategies.

Feature GitLab GitHub

C1/CD Native and built-in CI/CD with | Requires GitHub
YAML config Actions setup

Wiki + .) Available, but as

) Integrated into each project
Snippets separate features
Pages Built-in GitLab Pages with GitHub Pages, limited
Hosting CI/CD integration to static sites
DevSecOps Integrated SAST, DAST, External tools needed
Tools dependency & license scans or paid plans
Project Public, private, internal

Publi ivat
Visibility | (granular control) ublic or private

Project Agile boards, milestones, and Boards via Projects
Management | epics (less integrated)
Container Fully hosted per-project GitHub Container

Registry Docker registry Registry (separate)

Why I chose GitLab: “As a solo dev, I wanted fewer steps, Lless
friction, and full visibility. GitLab gives me all of that in one
space. It feels lLike a lLab, not just a repo.”

Diagrams
C4 Architecture Diagrams

e C4 Level @ - System Context Diagram

This diagram provides a high-level overview of how Doby (the
developer) interacts with the GitLab platform within their
development ecosystem. It identifies external tools and deployed
products, clarifying the system's role and boundaries.

e Purpose:

To show how GitLab fits into Doby’s development workflow and what
major systems or tools it interfaces with.

e Key Elements:

e Actor: Doby (Developer)
e System: GitLab Platform
e External Tools: VS Code, Terminal, Draw.io

e Outputs: Deployed projects including:
o Micro TCU-9 (Electron app)
o Sentinel Pi (Python scripts)
o Quantum City Game (Godot)
o Portfolio site via GitLab Pages

GitLab Pages (Portfolio Website)

Micro TCU-9 (Electron App Repo)
Do.et) GitLab Platform

Sentinel Pi (Python Scripts Repo)
]

Quantum City Game (Godot Project)

e C4 Level 1 - Container Diagram

This diagram zooms into the GitLab platform to illustrate its major
internal containers—essentially, the main services and environments
that support development and deployment.

e Purpose:

To break down GitLab into functional containers and show how Doby's
local development environment connects with each part of the system.

e Key Elements:

e Containers:
o Web Interface: for interacting with repositories, issues,
and merge requests
o CI/CD Engine: where .gitlab-ci.yml pipelines are executed
o GitLab Pages Hosting: deploys portfolio sites and
documentation
o Container & Package Registry: hosts Docker images,
artifacts, and packages
e External Input: Code is authored and pushed via local tools
(VS Code, Terminal)

Web Interface (Commits, Issues, MRs) CI/CD Engine (_gitlab-ci.yml Jobs)

Local Dev Environment (VS Code, Terminal, Draw.io)

e C4 Level 2 - Component Diagram (Example: Micro TCU-9)

This diagram focuses on the internal architecture of the Micro TCU-9
project as structured within its GitLab repository. It illustrates
the major components involved in the development, packaging, and
delivery of the application — highlighting both GitLab’s role and
external hosting on Itch.io.

& Purpose

To visualize how Micro TCU-9's source code, build logic, and
deployment workflow are organized across GitlLab and external
platforms.

X% Key Components

e Frontend (Electron + HTML/CSS/3JS):
Manages the user interface, interactions, and visual elements
like timers, task boards, and stickers.

e Backend (Node.js + IPC + Storage):
Handles logic processing, communication between modules, and
persistent storage for user data and settings.

CI/CD Pipeline (.gitlab-ci.yml):

Automates validation, basic build preparation, and version
tracking. Due to .exe upload limitations, final packaging is
done locally and hosted elsewhere.

Assets & Icons:

Custom visual elements including app icons and media files
embedded into the final build.
External Runtime:

The Electron runtime environment installed on the end user's
machine, required to execute the packaged desktop app.
Target OS:

Designed specifically for Windows as a .exe desktop
application.
Itch.io Hosting:

Serves as the external distribution platform for the
packaged .exe, allowing users to safely download the app.
End User:

Interacts with the application post-download, benefiting from
its features and accessibility enhancements.

= Micro TCU-9 GitLab Repo

™y

4‘ Backend (Node js, IPC, Storage) J Icons & Assets (.ico, media)

Frontend (Electron + HTML/CSS/JS) Build Script (.gitlab-ci.yml)
\ 4
Electron Runtime ‘P[Wmdows OS (Build Target)]r—) User Device (Downloads from ltch.io)

This high-level diagram illustrates the overall data flow for the
Micro TCU-9 application. It treats the entire system as a single
black-box process and focuses on how information moves between the
developer, the development platform (GitLab), and the end users.

To provide a bird’s-eye view of Micro TCU-9’s lifecycle — from
development to distribution — using a single abstracted process.

e External Entity:
Doby (Developer) - creates and updates Micro TCU-9 code.
e Process:
“Build and Distribute Micro TCU-9” - the central system
process that handles development and delivery.
e Data Stores/Outputs:
o GitLab Repository - stores the source code and project
files.
o (Optional) CI/CD Pipeline - used for building artifacts
(not used to host .exe in this case).
o Executable File - manually uploaded and hosted on
Itch.io.
o User Device - downloads and runs the .exe application.

1. The developer pushes code to the GitLab repository.

2. GitLab may optionally trigger a CI/CD pipeline for builds (not
for publishing).

3. The developer manually packages and uploads the final .exe to
Itch.io.

4. Users download the application from Itch.io and run it on
their local devices.

(

Doby (Developer) .\J User Device

L Build & Distribute Micro TCU-9

GitLab Repository Executable File (.exe on ltch.io)

CI/CD Pipeline (Optional)

This diagram breaks down the Micro TCU-9 lifecycle into
internal sub-processes, focusing on the path from development to
deployment.

1. Edit Code - Doby writes and modifies source code using local
tools (e.g., VS Code).

2. Commit to GitLab - Code is pushed to the GitLab repository.

3. Trigger CI/CD Pipeline - If enabled, .gitlab-ci.yml initiates
the pipeline.

4. Build Executable - Code is compiled and packaged into a .exe
application.

5. Publish Artifact - Final .exe is manually uploaded to Itch.io.

6. User Device - End users download and run the application.

2] Flow: The development process starts with local editing, passes
through version control and optional automation, and ends with
distribution and user execution.

Doby (Developer) — 1. Edit Code

v

2. Commit to GitLab

v

3. Trigger CI/CD Pipeline

v

4. Build Executable (.exe)

/ N
5. Publish Artifact —> User Device /\

—

This diagram zooms into the CI/CD Pipeline process (step 3 from
Level 1), detailing each task performed during automation that
prepares your code for distribution.

To explain the step-by-step breakdown of the GitLab CI/CD build
process as defined in .gitlab-ci.yml, leading up to the artifact
upload.

1. Clone Repository - Fetches the latest Micro TCU-9 code from
GitLab.

2. Install Dependencies - Installs required packages (e.g., Node
modules, Electron).

3. Run Tests (Optional) - Executes any automated tests or
linters, if configured.

4. Package Executable - Compiles and packages the application
into a Windows .exe.

5. Upload to Itch.io - Manually upload or via API to make the
executable available for users.

Flow:
Once changes are pushed, GitlLab triggers the pipeline; each

subprocess outputs to the next, culminating in the executable being
uploaded to Itch.io for user download.

3.1 Clone Repaository

l

3.2 Install Dependencies

l

3.3 Run Tests (Optional)

l

3.4 Package Executable

3.5 Upload to ltch.io

e ERD - Entity Relationship Diagram: GitLab Project Structure

The Entity Relationship Diagram (ERD) represents the core data
entities and relationships that structure your GitLab projects and
workflows. This model reflects how different parts of a project
interact and how they’re connected to contributors and processes.

To define and visualize the underlying data model of a typical
GitLab-based project — including contributors, files, repositories,
and automation workflows.

e Project
Contains metadata like name, visibility, programming
language, and project ID.
o Attributes: project_id, name, language, visibility
e File
Represents individual files within a project (code, assets,
config).
o Attributes: file id, file name, file type, last modified
o Relationship: Each project can contain many files.
e Contributor
Users with access to the project (e.g., Doby, assistants,
collaborators).
o Attributes: user_id, name, role, email
o Relationship: Contributors can work on multiple projects.
e Pipeline
Represents automated processes triggered by changes (CI/CD).
o Attributes: pipeline_id, status, stage, triggered_by
o Relationship: Each project can have multiple pipelines.

This ERD lays the groundwork for understanding how development,
collaboration, and deployment are managed in a GitLab environment.

Project File

project_id N file_id

name file_name

language file_type

visibility last_modified
Confributor Pipeline

user_id pipeline_id

name status

role stage

email triggered_by

The Use Case Diagram illustrates how the Developer interacts with
GitLab’s functionality throughout the lifecycle of a software
project. It focuses on the user goals and actions rather than
technical structure.

To highlight the specific tasks and interactions that the developer
performs within the GitLab ecosystem, aligned with the processes
visualized in the ERD and C4/DFD diagrams.

e Developer (Doby)

1. Create Project - Initiate a new GitLab repository for
organizing code and tasks.
2. Push Code - Upload files and commit changes using Git.
3. Run CI/CD Pipeline - Trigger automated jobs defined
in .gitlab-ci.yml.

4. Download Artifact - Access and download build outputs
(e.g., .exe files).

5. Review Code / Merge Request - View, review, and merge
contributions via GitLab's collaboration tools.

) 1 i ®

= SN

Create Project - Push Code —)(Run CI/CD Pipeline Download Artifact —>» Review Code / Merge Request

Developer

Through GitLab, I gained more than technical knowledge—I learned how
to structure ideas, version my dreams, and deploy my own creations
confidently into the world. With each project I launched, GitlLab
empowered me to:

e Build structure and professionalism into every creative idea

e Understand and trust continuous delivery systems

e Navigate DevOps tools with ease and excitement

e Showcase my skills through real-world portfolio deployments

e Own the full development lifecycle from planning to monitoring

	Table of Contents
	Introduction
	🧠 GitLab Functional Analysis
	📁 Repository Management
	⚙️ CI/CD Pipelines
	🔄 DevSecOps Lifecycle
	🧩 Integration Tools

	GitLab vs GitHub Comparison
	Diagrams
	C4 Architecture Diagrams
	• Purpose:
	• Key Elements:
	• Purpose:
	• Key Elements:
	🎯 Purpose
	🔧 Key Components

	• DFD Level 0 – Context-Level Diagram
	🎯 Purpose
	🧩 Key Elements
	🔁 Data Flow Overview

	• DFD Level 1 – High-Level Internal Workflow
	• DFD Level 2 – Detailed CI/CD Pipeline Breakdown

	• ERD – Entity Relationship Diagram: GitLab Project Structure
	Purpose:
	Key Entities:

	• Use Case Diagram – GitLab Developer Actions
	Purpose:
	Primary Actor:
	Use Cases:

	📚 Conclusion: What GitLab Taught Me

