...
 
Commits (2)
......@@ -7,6 +7,7 @@
#+EXCLUDE_TAGS: noexport
#+CREATOR: Emacs 25.2.2 (Org mode 9.1.14)
#+LaTeX_HEADER: \usepackage{siunitx}
$\require{\siunitx}$
* Section Review [1.2]
......
......@@ -7,6 +7,7 @@
#+EXCLUDE_TAGS: noexport
#+CREATOR: Emacs 25.2.2 (Org mode 9.1.14)
#+LaTeX_HEADER: \usepackage{siunitx}
$\require{\siunitx}$
* Chapter 1 Assessment
......
......@@ -7,6 +7,7 @@
#+EXCLUDE_TAGS: noexport
#+CREATOR: Emacs 26.1 (Org mode 9.1.9)
#+LaTeX_HEADER: \usepackage{siunitx}
$\require{\siunitx}$
* Section Review [6.2]
......@@ -44,5 +45,32 @@ circle is $4.1 \si{m/s}$, what is the friction necessary to keep her
from falling off the platform?
\begin{align}
F &= \frac{mV^{2}}{r} \\
F &= \frac{45 \cdot 16.81 \si{kgm^{2}/s^{2}}}{6.3 \si{m}} \\
F &= \frac{756.45}{6.3} \si{kgm/s^{2}} \\
F &= 120 \si{N}
\end{align}
** [18]
If a $40 \si{g}$ stone is whirled horizontally on the end of a
$0.6 \si{m}$ string at a speed of $2.2 \si{m/s}$, what is the tension
in the string?
\begin{align}
F &= \frac{mV^{2}}{r} \\
F &= \frac{40 \cdot 4.84 \si{gm^{2}/s^{2}}}{0.6 \si{m}} \\
F &= \frac{193.6}{0.6} \si{gm/s^{2}} \\
F &= 0.322 \si{N}
\end{align}
** [20]
A bowling ball has a mass of $7.3 \si{kg}$. If you move it around a
circle with a radius of $0.75 \si{m}$ at a speed of $2.5 \si{m/s}$,
what force would you have to exert on it?
\begin{align}
F &= \frac{mV^{2}}{r} \\
F &= \frac{7.3 \cdot 6.25 \si{kgm^{2}/s^{2}}}{0.75 \si{m}} \\
F &= \frac{45.625}{0.75} \si{kgm/s^{2}} \\
F &= 60.8 \si{N}
\end{align}