
ChannelAttribution: Markov model for online
marketing attribution problem.
Davide Altomare and David Loris

www.channelattribution.net

First release: September 1, 2015
Current release: July 7, 2020

ABSTRACT

This paper introduces ChannelAttribution, an open-source library for the estimation of Markov models from customer journey
data. ChannelAttribution consists on a R package and a Python library that let to estimate Markov models easily and quickly.

Introduction
Library ChannelAttribution approaches attribution problem in a probabilistic way. It uses a k-order Markov representation to
identifying structural correlations in the customer journey data. This would allow advertisers to give a more reliable assessment
of the marketing contribution of each channel. The approach is the one presented in F. Anderl, I. Becker, F. v. Wangenheim,
J.H. Schumann (2014): Mapping the customer journey: a graph-based framework for attribution modeling. Differently from
them, ChannelAttribution uses stochastic simulations for the estimation process. In this way it is also possible to take into
account conversion values and their variability in the computation of the channel importance. Moreover the package contains a
function that estimates three heuristic models (first-touch, last-touch and linear-touch approach) for the same problem. The
following paragraph is a gentle introduction to Markov model. It also contains some considerations on heuristic models.

First-order Markov Model
First-order Markov model is a probabilistic model used to model changing system. It assumes that future states depend only on
current state. There is a large leterature about Markov models and different fields where this kind of models have been applied.
In the following we will show how they can be applied to attribution problem in online marketing. Consider the following
example in which we have 4 states: (START), A, B, (CONVERSION) and 3 paths recorded:

PATH CONVERSIONS
(START) -> A -> B -> A -> B -> B -> A -> (CONV) 1
(START) ->A -> B -> B -> A -> A -> (CONV) 1
(START) -> A -> A -> (CONV) 1
TOTAL 3

For every couple of ordered states we count the number of directed edges:

EDGE ARROW.COUNT
(START) -> A 3
(START) -> B 0
A -> A 2
A -> B 3
A -> (CONV) 3
B -> A 3
B -> B 2
B -> (CONV) 0
TOTAL 16

http://www.channelattribution.net
https://www.linkedin.com/in/davide-altomare-29079a3a/
https://www.linkedin.com/in/david-thomas-loris-2b7950/
www.channelattribution.net
http://www.channelattribution.net
http://www.channelattribution.net
http://www.channelattribution.net
http://www.channelattribution.net

From the table we can calculate the transition probabilities between states:

EDGE ARROW.COUNT TRANSITION.PROBABILITIES
(START) -> A 3 3/3
(START) -> B 0 0/3
TOT (START) 3
A -> A 2 2/8
A -> B 3 3/8
A -> (CONV) 3 3/8
TOT A 8
B -> A 3 3/5
B -> B 2 2/5
B -> (CONV) 0 0/5
TOT B 5

Now we have all the information to plot the Markov Graph:

START A B

CONV

100%

25%
37.5%

37.5%

40%

60%

This kind of Markov Graph is called First-Order Markov Graph because the probability of reaching one state depends only
on the previous state visited. From the Graph, or more clearly from the original data, we see that every path leads to conversion.
Thus the conversion rate of the Graph is 1. Now we want to define a measure of channel importance using the relationship
between states described by the Graph. Importance of channel A can be defined as the change in conversion rate if channel A is
dropped from the Graph, or in other terms if channel A becomes a NULL state. A NULL state is an absorbing state so if one
reaches this STATE can’t move on.

START NULL B

CONV

100%

25%

37.5%

37.5%

40%

60%

This Graph simplifies to:

START NULL
100%

2/6

In previous Graph it’s easy to see that if channel A becomes a NULL state there is no way of reaching conversion from
START state. So conversion rate of this Graph is 0. The conversion drops from 1 (conversion of the original Graph) to 0. Thus
importance of channel A (defined as the change in conversion rate) is 1. In similar way we define the importance of channel B
as the change in conversion rate if channel B is dropped from the Graph, or in other terms if channel B becomes a NULL state.

START A NULL

CONV

100%

25%
37.5%

37.5%

40%

60%

This Graph simplifies to:

START A NULL

CONV

100% 50%

50%

In previous Graph we see the probability of reaching conversion from START state is 0.5. Conversion drops from 1
(conversion rate of the original Graph) to 0.5. Thus the importance of channel B (defined as the change in conversion rate) is
0.5. Once we have the importance weights of every channel we can do a weighted imputation of total conversions (3 in this
case) between channels.

CHANNEL CONVERSIONS
A 2 [=3 x 1/(1+0.5)]
B 1 [= 3 x 0.5/(1+0.5)]
TOTAL 3

Now let’s go back to the original data:

PATH CONVERSIONS
(START) -> A -> B -> A -> B -> B -> A -> (CONV) 1
(START) ->A -> B -> B -> A -> A -> (CONV) 1
(START) -> A -> A -> (CONV) 1
TOTAL 3

We see that if we use a first-touch or last-touch approach, all the conversions are assigned to channel A, despite the important
work of channel B in “conversion game” is clear from the data. The channel attribution problem can be viewed as a football
match, to better understand how different approaches work. So channels can be viewed as players, paths are game actions
and conversions are goals. Markov Model analyses relationships between game actions to understand the role of the player in
scoring. While heuristic approach analyzes one action (path) at the time. So last-touch approach rewards only players who

3/6

scored, while first-touch approach rewards only players who started the action. Linear approach rewards with the same credit
to every player who took part the action, while time-decay approaches gives subjective weights to every player who took
part the action. As we have seen Markov Model require as inputs paths and total conversions and does not require subjective
assumptions, differently from heuristic approaches.

R package ChannelAttribution
In the following example we will show how R package ChannelAttribution can be used for multichannel attribution problem.

#LOAD LIBRARIES AND DATA

library(ChannelAttribution)
library(reshape2)
library(ggplot2)
data(PathData)

#ESTIMATE HEURISTIC MODELS

H=heuristic_models(Data,"path","total_conversions",var_value="total_conversion_value")

#ESTIMATE MARKOV MODEL

M=markov_model(Data, "path", "total_conversions", var_value="total_conversion_value")

#PLOT TOTAL CONVERSIONS

R=merge(H,M,by="channel_name")
R1=R[,(colnames(R)%in%c("channel_name","first_touch_conversions","last_touch_conversions","linear_touch_

conversions","total_conversion"))]
colnames(R1)=c("channel_name","first_touch","last_touch","linear_touch","markov_model")
R1=melt(R1,id="channel_name")

ggplot(R2, aes(channel_name, value, fill = variable)) +
ggtitle("")+
geom_bar(stat="identity", position = "dodge") +
theme(plot.title = element_text(hjust = 0.5))+
theme(text = element_text(size=14)) +
theme(plot.title=element_text(size=18)) +
theme(legend.title = element_blank()) +
ylab("") +
xlab("")

#PLOT REVENUES

R2=R[,(colnames(R)%in%c("channel_name","first_touch_value","last_touch_value","linear_touch_value","
total_conversion_value"))]

4/6

http://www.channelattribution.net
http://www.channelattribution.net

colnames(R2)=c("channel_name","first_touch","last_touch","linear_touch","markov_model")
R2=melt(R2,id="channel_name")

ggplot(R2, aes(channel_name, value, fill = variable)) +
ggtitle("")+
geom_bar(stat="identity", position = "dodge") +
theme(plot.title = element_text(hjust = 0.5))+
theme(text = element_text(size=14)) +
theme(plot.title=element_text(size=18)) +
theme(legend.title = element_blank()) +
ylab("") +
xlab("")

Python library ChannelAttribution
In the following example we will show how Python library ChannelAttribution can be used for multichannel attribution problem.

#LOAD LIBRARIES AND DATA

import numpy as np
import pandas as pd
from ChannelAttribution import *
import plotly.io as pio

Data = pd.read_csv("https://raw.githubusercontent.com/DavideAltomare/ChannelAttribution/\
master/ChannelAttribution/src/cypack/data/Data.csv",sep=";")

#ESTIMATE HEURISTIC MODELS

H=heuristic_models(Data,"path","total_conversions",var_value="total_conversion_value")

#ESTIMATE MARKOV MODEL

M=markov_model(Data, "path", "total_conversions", var_value="total_conversion_value")

#PLOT TOTAL CONVERSIONS

R=pd.merge(H,M,on="channel_name",how="inner")
R1=R[["channel_name","first_touch_conversions","last_touch_conversions",\
"linear_touch_conversions","total_conversions"]]
R1.columns=["channel_name","first_touch","last_touch","linear_touch","markov_model"]
R1=pd.melt(R1, id_vars="channel_name")

data = [dict(
type = "histogram",
histfunc="sum",
x = R1.channel_name,

5/6

http://www.channelattribution.net
http://www.channelattribution.net

y = R1.value,
transforms = [dict(
type = "groupby",
groups = R1.variable,

)],
)]

fig = dict({"data":data})
pio.show(fig,validate=False)

#PLOT REVENUES

R2=R[["channel_name","first_touch_value","last_touch_value",\
"linear_touch_value","total_conversion_value"]]
R2.columns=["channel_name","first_touch","last_touch","linear_touch","markov_model"]

R2=pd.melt(R2, id_vars="channel_name")

data = [dict(
type = "histogram",
histfunc="sum",
x = R2.channel_name,
y = R2.value,
transforms = [dict(
type = "groupby",
groups = R2.variable,

)],
)]

fig = dict(data=data,layout=layout)
\end{comment}

fig = dict({"data":data})
pio.show(fig,validate=False)

6/6

