Skip to content

clang-19/libcxx-19 build fails: `reference to 'complex' is ambiguous`

libtool: compile:  clang++ -DHAVE_CONFIG_H -I. -I../../src -g -O2 -c Ldokchitser.cc  -fno-common -DPIC -o .libs/Ldokchitser.o
In file included from Ldokchitser.cc:1:
In file included from ./L.h:43:
In file included from ./Lglobals.h:55:
./Lcomplex.h:63:20: error: reference to 'complex' is ambiguous
   63 |   template<> class complex<float>;
      |                    ^
./Lcomplex.h:62:32: note: candidate found by name lookup is 'std::complex'
   62 |   template<typename _Tp> class complex;
      |                                ^
/nix/store/0nhi47d5ip48wprxnava6vv973zzzndf-libcxx-19.1.5-dev/include/c++/v1/__fwd/complex.h:22:28: note: candidate found by name lookup is 'std::__1::complex'
   22 | class _LIBCPP_TEMPLATE_VIS complex;
      |                            ^

full log

this is due to conflicts in Lcomplex.h. one fix is to just remove Lcomplex.h and use <complex> from stdlib but need to add some operators to perform operations between a complex<double> and int. Alternatively, can move the code in Lcomplex.h out of the std namespace.

remove Lcomplex.h and use stdlib complex
diff --git a/src/libLfunction/Lglobals.h b/src/libLfunction/Lglobals.h
index 8c6300b..202673f 100644
--- a/src/libLfunction/Lglobals.h
+++ b/src/libLfunction/Lglobals.h
@@ -52,8 +52,20 @@ using namespace std;
 //---------------------------------------------------------------------------
 
 
-#include "Lcomplex.h"     //for complex numbers
+#include <complex>
 typedef complex<Double> Complex;
+inline Complex operator* (const Complex &l, int r) { return l *  Double(r); }
+inline Complex operator/ (const Complex &l, int r) { return l /  Double(r); }
+inline Complex operator+ (const Complex &l, int r) { return l +  Double(r); }
+inline Complex operator- (const Complex &l, int r) { return l -  Double(r); }
+inline bool    operator==(const Complex &l, int r) { return l == Double(r); }
+inline bool    operator!=(const Complex &l, int r) { return l != Double(r); }
+
+inline Complex operator*(int l, const Complex &r) { return r * l; }
+inline Complex operator+(int l, const Complex &r) { return r + l; }
+
+inline Complex operator/(int l, const Complex &r) { return Double(l) / r; }
+inline Complex operator-(int l, const Complex &r) { return Double(l) - r; }
 
 #include "Lcommon.h"
 
diff --git a/src/libLfunction/Makefile.am b/src/libLfunction/Makefile.am
index 6a23bee..6684011 100644
--- a/src/libLfunction/Makefile.am
+++ b/src/libLfunction/Makefile.am
@@ -5,7 +5,6 @@ lib_LTLIBRARIES = libLfunction.la
 nodist_pkginclude_HEADERS = ../config.h
 pkginclude_HEADERS = \
   L.h \
-  Lcomplex.h \
   Ldokchitser.h \
   Lexplicit_formula.h \
   Lgamma.h \
diff --git a/src/libLfunction/mpreal.h b/src/libLfunction/mpreal.h
index 52d7bfa..1c97629 100644
--- a/src/libLfunction/mpreal.h
+++ b/src/libLfunction/mpreal.h
@@ -56,7 +56,7 @@
 #include <cmath>
 #include <cstring>
 #include <limits>
-#include "Lcomplex.h"
+#include <complex>
 #include <algorithm>
 #include <stdint.h>
 
diff --git a/src/libLfunction/Lcomplex.h b/src/libLfunction/Lcomplex.h
deleted file mode 100644
index 363bbf4..0000000
--- a/src/libLfunction/Lcomplex.h
+++ /dev/null
@@ -1,1198 +0,0 @@
-// The template and inlines for the -*- C++ -*- complex number classes.
-
-// Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002
-// Free Software Foundation, Inc.
-//
-// This file is part of the GNU ISO C++ Library.  This library is free
-// software; you can redistribute it and/or modify it under the
-// terms of the GNU General Public License as published by the
-// Free Software Foundation; either version 2, or (at your option)
-// any later version.
-
-// This library is distributed in the hope that it will be useful,
-// but WITHOUT ANY WARRANTY; without even the implied warranty of
-// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
-// GNU General Public License for more details.
-
-// You should have received a copy of the GNU General Public License along
-// with this library; see the file COPYING.  If not, write to the Free
-// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
-// USA.
-
-// As a special exception, you may use this file as part of a free software
-// library without restriction.  Specifically, if other files instantiate
-// templates or use macros or inline functions from this file, or you compile
-// this file and link it with other files to produce an executable, this
-// file does not by itself cause the resulting executable to be covered by
-// the GNU General Public License.  This exception does not however
-// invalidate any other reasons why the executable file might be covered by
-// the GNU General Public License.
-
-//
-// ISO C++ 14882: 26.2  Complex Numbers
-// Note: this is not a conforming implementation.
-// Initially implemented by Ulrich Drepper <drepper@cygnus.com>
-// Improved by Gabriel Dos Reis <dosreis@cmla.ens-cachan.fr>
-//
-
-/** @file complex
- *  This is a Standard C++ Library header.  You should @c #include this header
- *  in your programs, rather than any of the "st[dl]_*.h" implementation files.
- */
-
-#ifndef _CPP_COMPLEX
-#define _CPP_COMPLEX	1
-
-#pragma GCC system_header
-
-//no longer include:
-//#include <bits/cpp_type_traits.h>  only thing used was is_floating... 
-//gcc 4.0 cpp_type_traits.h is not compatible with gcc 3.3. 
-//But Lcomplex.h file was derived
-//from gcc 3.3 complex header file. The only thing used from that header file is __is_floating, so I just
-//renamed it in this file to __is_floating_old (to avoid conflict with other includes of
-//<bits/cpp_type_traits.h>) and cut and paste and renamed the old __is_floating.
-
-#include <cmath>
-#include <sstream>
-
-namespace std
-{
-  // Forward declarations
-  template<typename _Tp> class complex;
-  template<> class complex<float>;
-  template<> class complex<double>;
-  template<> class complex<long double>;
-
-  template<typename _Tp> _Tp abs(const complex<_Tp>&);
-  template<typename _Tp> _Tp arg(const complex<_Tp>&);
-  template<typename _Tp> _Tp norm(const complex<_Tp>&);
-
-  template<typename _Tp> complex<_Tp> conj(const complex<_Tp>&);
-  template<typename _Tp> complex<_Tp> polar(const _Tp&, const _Tp& = 0);
-
-  // Transcendentals:
-  template<typename _Tp> complex<_Tp> cos(const complex<_Tp>&);
-  template<typename _Tp> complex<_Tp> cosh(const complex<_Tp>&);
-  template<typename _Tp> complex<_Tp> exp(const complex<_Tp>&);
-  template<typename _Tp> complex<_Tp> log(const complex<_Tp>&);
-  template<typename _Tp> complex<_Tp> log10(const complex<_Tp>&);
-  template<typename _Tp, typename _Up> complex<_Tp> pow(const complex<_Tp>&, const _Up&);
-  template<typename _Tp, typename _Up> complex<_Tp> pow(const _Up&, const complex<_Tp>&);
-  template<typename _Tp> complex<_Tp> pow(const complex<_Tp>&, int);
-  template<typename _Tp> complex<_Tp> pow(const complex<_Tp>&, const complex<_Tp>&);
-  template<typename _Tp> complex<_Tp> pow(const _Tp&, const complex<_Tp>&);
-  template<typename _Tp> complex<_Tp> sin(const complex<_Tp>&);
-  template<typename _Tp> complex<_Tp> sinh(const complex<_Tp>&);
-  template<typename _Tp> complex<_Tp> sqrt(const complex<_Tp>&);
-  template<typename _Tp> complex<_Tp> tan(const complex<_Tp>&);
-  template<typename _Tp> complex<_Tp> tanh(const complex<_Tp>&);
-
-
-  // 26.2.2  Primary template class complex
-  template<typename _Tp>
-    class complex
-    {
-    public:
-      typedef _Tp value_type;
-
-      complex(const _Tp& = 0, const _Tp& = 0);
-      complex(const int&);
-      complex(const double&);
-
-      // Let's the compiler synthetize the copy constructor
-      // complex (const complex<_Tp>&);
-      template<typename _Up>
-        complex(const _Up&);
-      template<typename _Up>
-        complex(const complex<_Up>&);
-
-      _Tp real() const;
-      _Tp imag() const;
-
-      template<typename _Up> complex<_Tp>& operator=(const _Up&);
-      complex<_Tp>& operator=(const _Tp&);
-      complex<_Tp>& operator=(const int&);
-      complex<_Tp>& operator=(const double&);
-      complex<_Tp>& operator+=(const _Tp&);
-      complex<_Tp>& operator-=(const _Tp&);
-      complex<_Tp>& operator*=(const _Tp&);
-      complex<_Tp>& operator/=(const _Tp&);
-
-      // Let's the compiler synthetize the
-      // copy and assignment operator
-      // complex<_Tp>& operator= (const complex<_Tp>&);
-      template<typename _Up>
-        complex<_Tp>& operator=(const complex<_Up>&);
-      template<typename _Up>
-        complex<_Tp>& operator+=(const complex<_Up>&);
-      template<typename _Up>
-        complex<_Tp>& operator-=(const complex<_Up>&);
-      template<typename _Up>
-        complex<_Tp>& operator*=(const complex<_Up>&);
-      template<typename _Up>
-        complex<_Tp>& operator/=(const complex<_Up>&);
-
-      friend void reset(complex<_Tp>& C) {
-          reset(C._M_real);
-          reset(C._M_imag);
-      }
-
-    private:
-      _Tp _M_real, _M_imag;
-    };
-
-  template<typename _Tp>
-    inline _Tp
-    complex<_Tp>::real() const { return _M_real; }
-
-  template<typename _Tp>
-    inline _Tp
-    complex<_Tp>::imag() const { return _M_imag; }
-
-  template<typename _Tp>
-    inline 
-    complex<_Tp>::complex(const _Tp& __r, const _Tp& __i) {
-	    _M_real=__r;
-	    _M_imag=__i;
-    }
-
-  template<typename _Tp> template<typename _Up>
-    inline 
-    complex<_Tp>::complex(const _Up& r) {
-	    _M_real=r;
-	    _M_imag=0.;
-    }
-
-  template<typename _Tp>
-    inline 
-    complex<_Tp>::complex(const int& r) {
-	    _M_real=r;
-	    _M_imag=0.;
-    }
-  template<typename _Tp>
-    inline 
-    complex<_Tp>::complex(const double& r) {
-	    _M_real=r;
-	    _M_imag=0.;
-    }
-
-  template<typename _Tp>
-    template<typename _Up>
-    inline 
-    complex<_Tp>::complex(const complex<_Up>& __z)
-    : _M_real(__z.real()), _M_imag(__z.imag()) { }
-        
-  template<typename _Tp> template<typename _Up>
-    complex<_Tp>&
-    complex<_Tp>::operator=(const _Up& __t)
-    {
-     _M_real = __t;
-     _M_imag = _Tp(0);
-     return *this;
-    }
-
-
-  template<typename _Tp>
-    complex<_Tp>&
-    complex<_Tp>::operator=(const _Tp& __t)
-    {
-     _M_real = __t;
-     _M_imag = _Tp(0);
-     return *this;
-    }
-
-  template<typename _Tp>
-    complex<_Tp>&
-    complex<_Tp>::operator=(const int& __t)
-    {
-     _M_real = __t;
-     _M_imag = _Tp(0);
-     return *this;
-    }
-
-  template<typename _Tp>
-    complex<_Tp>&
-    complex<_Tp>::operator=(const double& __t)
-    {
-     _M_real = __t;
-     _M_imag = _Tp(0);
-     return *this;
-    }
-
-  // 26.2.5/1
-  template<typename _Tp>
-    inline complex<_Tp>&
-    complex<_Tp>::operator+=(const _Tp& __t)
-    {
-      _M_real += __t;
-      return *this;
-    }
-
-  // 26.2.5/3
-  template<typename _Tp>
-    inline complex<_Tp>&
-    complex<_Tp>::operator-=(const _Tp& __t)
-    {
-      _M_real -= __t;
-      return *this;
-    }
-
-  // 26.2.5/5
-  template<typename _Tp>
-    complex<_Tp>&
-    complex<_Tp>::operator*=(const _Tp& __t)
-    {
-      _M_real *= __t;
-      _M_imag *= __t;
-      return *this;
-    }
-
-  // 26.2.5/7
-  template<typename _Tp>
-    complex<_Tp>&
-    complex<_Tp>::operator/=(const _Tp& __t)
-    {
-      _M_real /= __t;
-      _M_imag /= __t;
-      return *this;
-    }
-
-  template<typename _Tp>
-    template<typename _Up>
-    complex<_Tp>&
-    complex<_Tp>::operator=(const complex<_Up>& __z)
-    {
-      _M_real = __z.real();
-      _M_imag = __z.imag();
-      return *this;
-    }
-
-  // 26.2.5/9
-  template<typename _Tp>
-    template<typename _Up>
-    complex<_Tp>&
-    complex<_Tp>::operator+=(const complex<_Up>& __z)
-    {
-      _M_real += __z.real();
-      _M_imag += __z.imag();
-      return *this;
-    }
-
-  // 26.2.5/11
-  template<typename _Tp>
-    template<typename _Up>
-    complex<_Tp>&
-    complex<_Tp>::operator-=(const complex<_Up>& __z)
-    {
-      _M_real -= __z.real();
-      _M_imag -= __z.imag();
-      return *this;
-    }
-
-  // 26.2.5/13
-  // XXX: This is a grammar school implementation.
-  template<typename _Tp>
-    template<typename _Up>
-    complex<_Tp>&
-    complex<_Tp>::operator*=(const complex<_Up>& __z)
-    {
-      const _Tp __r = _M_real * __z.real() - _M_imag * __z.imag();
-      _M_imag = _M_real * __z.imag() + _M_imag * __z.real();
-      _M_real = __r;
-      return *this;
-    }
-
-  // 26.2.5/15
-  // XXX: This is a grammar school implementation.
-  template<typename _Tp>
-    template<typename _Up>
-    complex<_Tp>&
-    complex<_Tp>::operator/=(const complex<_Up>& __z)
-    {
-      const _Tp __r =  _M_real * __z.real() + _M_imag * __z.imag();
-      const _Tp __n = norm(__z);
-      _M_imag = (_M_imag * __z.real() - _M_real * __z.imag()) / __n;
-      _M_real = __r / __n;
-      return *this;
-    }
-
-  // Operators:
-  template<typename _Tp>
-    inline complex<_Tp>
-    operator+(const complex<_Tp>& __x, const complex<_Tp>& __y)
-    { return complex<_Tp> (__x) += __y; }
-
-  template<typename _Tp,
-  typename _Up>
-    inline complex<_Tp>
-    operator+(const complex<_Tp>& __x, const _Up& __y)
-    { return complex<_Tp> (__x) += __y; }
-
-  template<typename _Tp,
-  typename _Up>
-    inline complex<_Tp>
-    operator+(const _Up& __x, const complex<_Tp>& __y)
-    { return complex<_Tp> (__y) += __x; }
-
-  template<typename _Tp>
-    inline complex<_Tp>
-    operator-(const complex<_Tp>& __x, const complex<_Tp>& __y)
-    { return complex<_Tp> (__x) -= __y; }
-
-  template<typename _Tp,
-  typename _Up>
-    inline complex<_Tp>
-    operator-(const complex<_Tp>& __x, const _Up& __y)
-    { return complex<_Tp> (__x) -= __y; }
-
-  template<typename _Tp,
-  typename _Up>
-    inline complex<_Tp>
-    operator-(const _Up& __x, const complex<_Tp>& __y)
-    { return complex<_Tp> (__x) -= __y; }
-
-  template<typename _Tp>
-    inline complex<_Tp>
-    operator*(const complex<_Tp>& __x, const complex<_Tp>& __y)
-    { return complex<_Tp> (__x) *= __y; }
-
-  template<typename _Tp,
-  typename _Up>
-    inline complex<_Tp>
-    operator*(const complex<_Tp>& __x, const _Up& __y)
-    { return complex<_Tp> (__x) *= __y; }
-
-  template<typename _Tp,
-  typename _Up>
-    inline complex<_Tp>
-    operator*(const _Up& __x, const complex<_Tp>& __y)
-    { return complex<_Tp> (__y) *= __x; }
-
-  template<typename _Tp>
-    inline complex<_Tp>
-    operator/(const complex<_Tp>& __x, const complex<_Tp>& __y)
-    { return complex<_Tp> (__x) /= __y; }
-
-  template<typename _Tp,
-  typename _Up>
-    inline complex<_Tp>
-    operator/(const complex<_Tp>& __x, const _Up& __y)
-    { return complex<_Tp> (__x) /= __y; }
-
-  template<typename _Tp,
-  typename _Up>
-    inline complex<_Tp>
-    operator/(const _Up& __x, const complex<_Tp>& __y)
-    { return complex<_Tp> (__x) /= __y; }
-
-  template<typename _Tp>
-    inline complex<_Tp>
-    operator+(const complex<_Tp>& __x)
-    { return __x; }
-
-  template<typename _Tp>
-    inline complex<_Tp>
-    operator-(const complex<_Tp>& __x)
-    {  return complex<_Tp>(-__x.real(), -__x.imag()); }
-
-  template<typename _Tp>
-    inline bool
-    operator==(const complex<_Tp>& __x, const complex<_Tp>& __y)
-    { return __x.real() == __y.real() && __x.imag() == __y.imag(); }
-
-  template<typename _Tp, typename _Up>
-    inline bool
-    operator==(const complex<_Tp>& __x, const _Up& __y)
-    { return __x.real() == __y && __x.imag() == _Tp(0); }
-
-  template<typename _Tp, typename _Up>
-    inline bool
-    operator==(const _Up& __x, const complex<_Tp>& __y)
-    { return __x == __y.real() && _Tp(0) == __y.imag(); }
-
-  template<typename _Tp>
-    inline bool
-    operator!=(const complex<_Tp>& __x, const complex<_Tp>& __y)
-    { return __x.real() != __y.real() || __x.imag() != __y.imag(); }
-
-  template<typename _Tp, typename _Up>
-    inline bool
-    operator!=(const complex<_Tp>& __x, const _Up& __y)
-    { return __x.real() != __y || __x.imag() != _Tp(0); }
-
-  template<typename _Tp, typename _Up>
-    inline bool
-    operator!=(const _Up& __x, const complex<_Tp>& __y)
-    { return __x != __y.real() || _Tp(0) != __y.imag(); }
-
-  template<typename _Tp, typename _CharT, class _Traits>
-    basic_istream<_CharT, _Traits>&
-    operator>>(basic_istream<_CharT, _Traits>& __is, complex<_Tp>& __x)
-    {
-      _Tp __re_x, __im_x;
-      _CharT __ch;
-      __is >> __ch;
-      if (__ch == '(')
-	{
-	  __is >> __re_x >> __ch;
-	  if (__ch == ',')
-	    {
-	      __is >> __im_x >> __ch;
-	      if (__ch == ')')
-		__x = complex<_Tp>(__re_x, __im_x);
-	      else
-		__is.setstate(ios_base::failbit);
-	    }
-	  else if (__ch == ')')
-	    __x = complex<_Tp>(__re_x, _Tp(0));
-	  else
-	    __is.setstate(ios_base::failbit);
-	}
-      else
-	{
-	  __is.putback(__ch);
-	  __is >> __re_x;
-	  __x = complex<_Tp>(__re_x, _Tp(0));
-	}
-      return __is;
-    }
-
-  template<typename _Tp, typename _CharT, class _Traits>
-    basic_ostream<_CharT, _Traits>&
-    operator<<(basic_ostream<_CharT, _Traits>& __os, const complex<_Tp>& __x)
-    {
-      basic_ostringstream<_CharT, _Traits> __s;
-      __s.flags(__os.flags());
-      __s.imbue(__os.getloc());
-      __s.precision(__os.precision());
-      __s << '(' << __x.real() << ',' << __x.imag() << ')';
-      return __os << __s.str();
-    }
-
-  // Values
-  template<typename _Tp>
-    inline _Tp
-    real(const complex<_Tp>& __z)
-    { return __z.real(); }
-
-  template<typename _Tp>
-    inline _Tp
-    imag(const complex<_Tp>& __z)
-    { return __z.imag(); }
-
-  template<typename _Tp>
-    inline _Tp
-    abs(const complex<_Tp>& __z)
-    {
-      _Tp __x = __z.real();
-      _Tp __y = __z.imag();
-      const _Tp __s = max(abs(__x), abs(__y));
-      if (__s == _Tp(0))  // well ...
-        return __s;
-      __x /= __s;
-      __y /= __s;
-      return __s * sqrt(__x * __x + __y * __y);
-    }
-
-  template<typename _Tp>
-    inline _Tp
-    arg(const complex<_Tp>& __z)
-    { return atan2(__z.imag(), __z.real()); }
-
-  // 26.2.7/5: norm(__z) returns the squared magintude of __z.
-  //     As defined, norm() is -not- a norm is the common mathematical
-  //     sens used in numerics.  The helper class _Norm_helper<> tries to
-  //     distinguish between builtin floating point and the rest, so as
-  //     to deliver an answer as close as possible to the real value.
-  template<bool>
-    struct _Norm_helper
-    {
-      template<typename _Tp>
-        static inline _Tp _S_do_it(const complex<_Tp>& __z)
-        {
-          const _Tp __x = __z.real();
-          const _Tp __y = __z.imag();
-          return __x * __x + __y * __y;
-        }
-    };
-
-  template<>
-    struct _Norm_helper<true>
-    {
-      template<typename _Tp>
-        static inline _Tp _S_do_it(const complex<_Tp>& __z)
-        {
-          _Tp __res = abs(__z);
-          return __res * __res;
-        }
-    };
-
-  //============= added from gcc 3.3 cpp_type_traits.h and renamed __is_floating_old
-  //
-  // Floating point types
-  //
-  template<typename _Tp>
-  struct __is_floating_old
-  {
-    enum
-    {
-      _M_type = 0
-    };
-  };
-
-  // three specializations (float, double and 'long double')
-  template<>
-  struct __is_floating_old<float>
-  {
-    enum
-    {
-      _M_type = 1
-    };
-  };
-
-  template<>
-  struct __is_floating_old<double>
-  {
-    enum
-    {
-      _M_type = 1
-    };
-  };
-
-  template<>
-  struct __is_floating_old<long double>
-  {
-    enum
-    {
-      _M_type = 1
-    };
-  };
-
-
-  //============== end cut and paste and rename __is_floating
-
-  template<typename _Tp>
-    inline _Tp
-    norm(const complex<_Tp>& __z)
-    {
-      return _Norm_helper<__is_floating_old<_Tp>::_M_type>::_S_do_it(__z);
-    }
-
-  template<typename _Tp>
-    inline complex<_Tp>
-    polar(const _Tp& __rho, const _Tp& __theta)
-    { return complex<_Tp>(__rho * cos(__theta), __rho * sin(__theta)); }
-
-  template<typename _Tp>
-    inline complex<_Tp>
-    conj(const complex<_Tp>& __z)
-    { return complex<_Tp>(__z.real(), -__z.imag()); }
-
-  // Transcendentals
-  template<typename _Tp>
-    inline complex<_Tp>
-    cos(const complex<_Tp>& __z)
-    {
-      const _Tp __x = __z.real();
-      const _Tp __y = __z.imag();
-      return complex<_Tp>(cos(__x) * cosh(__y), -sin(__x) * sinh(__y));
-    }
-
-  template<typename _Tp>
-    inline complex<_Tp>
-    cosh(const complex<_Tp>& __z)
-    {
-      const _Tp __x = __z.real();
-      const _Tp __y = __z.imag();
-      return complex<_Tp>(cosh(__x) * cos(__y), sinh(__x) * sin(__y));
-    }
-
-  template<typename _Tp>
-    inline complex<_Tp>
-    exp(const complex<_Tp>& __z)
-    { return polar(exp(__z.real()), __z.imag()); }
-
-  template<typename _Tp>
-    inline complex<_Tp>
-    log(const complex<_Tp>& __z)
-    { return complex<_Tp>(log(abs(__z)), arg(__z)); }
-
-  template<typename _Tp>
-    inline complex<_Tp>
-    log10(const complex<_Tp>& __z)
-    { return log(__z) / log(_Tp(10.0)); }
-
-  template<typename _Tp>
-    inline complex<_Tp>
-    sin(const complex<_Tp>& __z)
-    {
-      const _Tp __x = __z.real();
-      const _Tp __y = __z.imag();
-      return complex<_Tp>(sin(__x) * cosh(__y), cos(__x) * sinh(__y)); 
-    }
-
-  template<typename _Tp>
-    inline complex<_Tp>
-    sinh(const complex<_Tp>& __z)
-    {
-      const _Tp __x = __z.real();
-      const _Tp  __y = __z.imag();
-      return complex<_Tp>(sinh(__x) * cos(__y), cosh(__x) * sin(__y));
-    }
-
-  template<typename _Tp>
-    complex<_Tp>
-    sqrt(const complex<_Tp>& __z)
-    {
-      _Tp __x = __z.real();
-      _Tp __y = __z.imag();
-
-      if (__x == _Tp(0))
-        {
-          _Tp __t = sqrt(abs(__y) / 2);
-          return complex<_Tp>(__t, __y < _Tp(0) ? __t=-__t : __t);
-        }
-      else
-        {
-          _Tp __t = sqrt(2 * (abs(__z) + abs(__x)));
-          _Tp __u = __t / 2;
-          return __x > _Tp(0)
-            ? complex<_Tp>(__u, __y / __t)
-            : complex<_Tp>(abs(__y) / __t, __y < _Tp(0) ? __u=-__u : __u);
-        }
-    }
-
-  template<typename _Tp>
-    inline complex<_Tp>
-    tan(const complex<_Tp>& __z)
-    {
-      return sin(__z) / cos(__z);
-    }
-
-  template<typename _Tp>
-    inline complex<_Tp>
-    tanh(const complex<_Tp>& __z)
-    {
-      return sinh(__z) / cosh(__z);
-    }
-
-  // Code from bits/cmath.cc, written by Gabriel Dos Reis
-  template<typename _Tp> inline complex<_Tp>
-    pow(const complex<_Tp>& __z, int __n)
-    {
-      complex<_Tp> __y = __n % 2 ? __z : complex<_Tp>(1);
-      complex<_Tp> __x = __z;
-
-      while (__n >>= 1)
-        {
-          __x = __x * __x;
-          if (__n % 2)
-            __y = __y * __x;
-        }
-
-      return __y;
-
-    }
-
-
-  template<typename _Tp, typename _Up>
-    inline complex<_Tp>
-    pow(const complex<_Tp>& __x, const _Up& __y)
-    {
-      return exp(__y * log(__x));
-    }
-
-  template<typename _Tp, typename _Up>
-    inline complex<_Tp>
-    pow(const _Up& __x, const complex<_Tp>& __y)
-    {
-      return exp(__y * log(__x));
-    }
-
-  template<typename _Tp>
-    inline complex<_Tp>
-    pow(const complex<_Tp>& __x, const complex<_Tp>& __y)
-    {
-      return exp(__y * log(__x));
-    }
-
-  template<typename _Tp>
-    inline complex<_Tp>
-    pow(const _Tp& __x, const complex<_Tp>& __y)
-    {
-      return exp(__y * log(__x));
-    }
-
-  // 26.2.3  complex specializations
-  // complex<float> specialization
-  template<> class complex<float>
-  {
-  public:
-    typedef float value_type;
-
-    complex(float = 0.0f, float = 0.0f);
-#ifdef _GLIBCPP_BUGGY_COMPLEX
-    complex(const complex& __z) : _M_value(__z._M_value) { }
-#endif
-    explicit complex(const complex<double>&);
-    explicit complex(const complex<long double>&);
-
-    float real() const;
-    float imag() const;
-
-    complex<float>& operator=(float);
-    complex<float>& operator+=(float);
-    complex<float>& operator-=(float);
-    complex<float>& operator*=(float);
-    complex<float>& operator/=(float);
-
-    // Let's the compiler synthetize the copy and assignment
-    // operator.  It always does a pretty good job.
-    // complex& operator= (const complex&);
-    template<typename _Tp>
-      complex<float>&operator=(const complex<_Tp>&);
-    template<typename _Tp>
-      complex<float>& operator+=(const complex<_Tp>&);
-    template<class _Tp>
-      complex<float>& operator-=(const complex<_Tp>&);
-    template<class _Tp>
-      complex<float>& operator*=(const complex<_Tp>&);
-    template<class _Tp>
-      complex<float>&operator/=(const complex<_Tp>&);
-
-  private:
-    typedef __complex__ float _ComplexT;
-    _ComplexT _M_value;
-
-    complex(_ComplexT __z) : _M_value(__z) { }
-
-    friend class complex<double>;
-    friend class complex<long double>;
-  };
-
-  inline float
-  complex<float>::real() const
-  { return __real__ _M_value; }
-
-  inline float
-  complex<float>::imag() const
-  { return __imag__ _M_value; }
-
-  inline
-  complex<float>::complex(float r, float i)
-  {
-    __real__ _M_value = r;
-    __imag__ _M_value = i;
-  }
-
-  inline complex<float>&
-  complex<float>::operator=(float __f)
-  {
-    __real__ _M_value = __f;
-    __imag__ _M_value = 0.0f;
-    return *this;
-  }
-
-  inline complex<float>&
-  complex<float>::operator+=(float __f)
-  {
-    __real__ _M_value += __f;
-    return *this;
-  }
-
-  inline complex<float>&
-  complex<float>::operator-=(float __f)
-  {
-    __real__ _M_value -= __f;
-    return *this;
-  }
-
-  inline complex<float>&
-  complex<float>::operator*=(float __f)
-  {
-    _M_value *= __f;
-    return *this;
-  }
-
-  inline complex<float>&
-  complex<float>::operator/=(float __f)
-  {
-    _M_value /= __f;
-    return *this;
-  }
-
-  template<typename _Tp>
-  inline complex<float>&
-  complex<float>::operator=(const complex<_Tp>& __z)
-  {
-    __real__ _M_value = __z.real();
-    __imag__ _M_value = __z.imag();
-    return *this;
-  }
-
-  template<typename _Tp>
-  inline complex<float>&
-  complex<float>::operator+=(const complex<_Tp>& __z)
-  {
-    __real__ _M_value += __z.real();
-    __imag__ _M_value += __z.imag();
-    return *this;
-  }
-
-  template<typename _Tp>
-    inline complex<float>&
-    complex<float>::operator-=(const complex<_Tp>& __z)
-    {
-     __real__ _M_value -= __z.real();
-     __imag__ _M_value -= __z.imag();
-     return *this;
-    }
-
-  template<typename _Tp>
-    inline complex<float>&
-    complex<float>::operator*=(const complex<_Tp>& __z)
-    {
-      _ComplexT __t;
-      __real__ __t = __z.real();
-      __imag__ __t = __z.imag();
-      _M_value *= __t;
-      return *this;
-    }
-
-  template<typename _Tp>
-    inline complex<float>&
-    complex<float>::operator/=(const complex<_Tp>& __z)
-    {
-      _ComplexT __t;
-      __real__ __t = __z.real();
-      __imag__ __t = __z.imag();
-      _M_value /= __t;
-      return *this;
-    }
-
-  // 26.2.3  complex specializations
-  // complex<double> specialization
-  template<> class complex<double>
-  {
-  public:
-    typedef double value_type;
-
-    complex(double  =0.0, double =0.0);
-#ifdef _GLIBCPP_BUGGY_COMPLEX
-    complex(const complex& __z) : _M_value(__z._M_value) { }
-#endif
-    complex(const complex<float>&);
-    explicit complex(const complex<long double>&);
-
-    double real() const;
-    double imag() const;
-
-    complex<double>& operator=(double);
-    complex<double>& operator+=(double);
-    complex<double>& operator-=(double);
-    complex<double>& operator*=(double);
-    complex<double>& operator/=(double);
-
-    // The compiler will synthetize this, efficiently.
-    // complex& operator= (const complex&);
-    template<typename _Tp>
-      complex<double>& operator=(const complex<_Tp>&);
-    template<typename _Tp>
-      complex<double>& operator+=(const complex<_Tp>&);
-    template<typename _Tp>
-      complex<double>& operator-=(const complex<_Tp>&);
-    template<typename _Tp>
-      complex<double>& operator*=(const complex<_Tp>&);
-    template<typename _Tp>
-      complex<double>& operator/=(const complex<_Tp>&);
-
-  private:
-    typedef __complex__ double _ComplexT;
-    _ComplexT _M_value;
-
-    complex(_ComplexT __z) : _M_value(__z) { }
-
-    friend class complex<float>;
-    friend class complex<long double>;
-  };
-
-  inline double
-  complex<double>::real() const
-  { return __real__ _M_value; }
-
-  inline double
-  complex<double>::imag() const
-  { return __imag__ _M_value; }
-
-  inline
-  complex<double>::complex(double __r, double __i)
-  {
-    __real__ _M_value = __r;
-    __imag__ _M_value = __i;
-  }
-
-  inline complex<double>&
-  complex<double>::operator=(double __d)
-  {
-    __real__ _M_value = __d;
-    __imag__ _M_value = 0.0;
-    return *this;
-  }
-
-  inline complex<double>&
-  complex<double>::operator+=(double __d)
-  {
-    __real__ _M_value += __d;
-    return *this;
-  }
-
-  inline complex<double>&
-  complex<double>::operator-=(double __d)
-  {
-    __real__ _M_value -= __d;
-    return *this;
-  }
-
-  inline complex<double>&
-  complex<double>::operator*=(double __d)
-  {
-    _M_value *= __d;
-    return *this;
-  }
-
-  inline complex<double>&
-  complex<double>::operator/=(double __d)
-  {
-    _M_value /= __d;
-    return *this;
-  }
-
-  template<typename _Tp>
-    inline complex<double>&
-    complex<double>::operator=(const complex<_Tp>& __z)
-    {
-      __real__ _M_value = __z.real();
-      __imag__ _M_value = __z.imag();
-      return *this;
-    }
-
-  template<typename _Tp>
-    inline complex<double>&
-    complex<double>::operator+=(const complex<_Tp>& __z)
-    {
-      __real__ _M_value += __z.real();
-      __imag__ _M_value += __z.imag();
-      return *this;
-    }
-
-  template<typename _Tp>
-    inline complex<double>&
-    complex<double>::operator-=(const complex<_Tp>& __z)
-    {
-      __real__ _M_value -= __z.real();
-      __imag__ _M_value -= __z.imag();
-      return *this;
-    }
-
-  template<typename _Tp>
-    inline complex<double>&
-    complex<double>::operator*=(const complex<_Tp>& __z)
-    {
-      _ComplexT __t;
-      __real__ __t = __z.real();
-      __imag__ __t = __z.imag();
-      _M_value *= __t;
-      return *this;
-    }
-
-  template<typename _Tp>
-    inline complex<double>&
-    complex<double>::operator/=(const complex<_Tp>& __z)
-    {
-      _ComplexT __t;
-      __real__ __t = __z.real();
-      __imag__ __t = __z.imag();
-      _M_value /= __t;
-      return *this;
-    }
-
-  // 26.2.3  complex specializations
-  // complex<long double> specialization
-  template<> class complex<long double>
-  {
-  public:
-    typedef long double value_type;
-
-    complex(long double = 0.0L, long double = 0.0L);
-#ifdef _GLIBCPP_BUGGY_COMPLEX
-    complex(const complex& __z) : _M_value(__z._M_value) { }
-#endif
-    complex(const complex<float>&);
-    complex(const complex<double>&);
-
-    long double real() const;
-    long double imag() const;
-
-    complex<long double>& operator= (long double);
-    complex<long double>& operator+= (long double);
-    complex<long double>& operator-= (long double);
-    complex<long double>& operator*= (long double);
-    complex<long double>& operator/= (long double);
-
-    // The compiler knows how to do this efficiently
-    // complex& operator= (const complex&);
-    template<typename _Tp>
-      complex<long double>& operator=(const complex<_Tp>&);
-    template<typename _Tp>
-      complex<long double>& operator+=(const complex<_Tp>&);
-    template<typename _Tp>
-      complex<long double>& operator-=(const complex<_Tp>&);
-    template<typename _Tp>
-      complex<long double>& operator*=(const complex<_Tp>&);
-    template<typename _Tp>
-      complex<long double>& operator/=(const complex<_Tp>&);
-
-  private:
-    typedef __complex__ long double _ComplexT;
-    _ComplexT _M_value;
-
-    complex(_ComplexT __z) : _M_value(__z) { }
-
-    friend class complex<float>;
-    friend class complex<double>;
-  };
-
-  inline
-  complex<long double>::complex(long double __r, long double __i)
-  {
-    __real__ _M_value = __r;
-    __imag__ _M_value = __i;
-  }
-
-  inline long double
-  complex<long double>::real() const
-  { return __real__ _M_value; }
-
-  inline long double
-  complex<long double>::imag() const
-  { return __imag__ _M_value; }
-
-  inline complex<long double>&
-  complex<long double>::operator=(long double __r)
-  {
-    __real__ _M_value = __r;
-    __imag__ _M_value = 0.0L;
-    return *this;
-  }
-
-  inline complex<long double>&
-  complex<long double>::operator+=(long double __r)
-  {
-    __real__ _M_value += __r;
-    return *this;
-  }
-
-  inline complex<long double>&
-  complex<long double>::operator-=(long double __r)
-  {
-    __real__ _M_value -= __r;
-    return *this;
-  }
-
-  inline complex<long double>&
-  complex<long double>::operator*=(long double __r)
-  {
-    _M_value *= __r;
-    return *this;
-  }
-
-  inline complex<long double>&
-  complex<long double>::operator/=(long double __r)
-  {
-    _M_value /= __r;
-    return *this;
-  }
-
-  template<typename _Tp>
-    inline complex<long double>&
-    complex<long double>::operator=(const complex<_Tp>& __z)
-    {
-      __real__ _M_value = __z.real();
-      __imag__ _M_value = __z.imag();
-      return *this;
-    }
-
-  template<typename _Tp>
-    inline complex<long double>&
-    complex<long double>::operator+=(const complex<_Tp>& __z)
-    {
-      __real__ _M_value += __z.real();
-      __imag__ _M_value += __z.imag();
-      return *this;
-    }
-
-  template<typename _Tp>
-    inline complex<long double>&
-    complex<long double>::operator-=(const complex<_Tp>& __z)
-    {
-      __real__ _M_value -= __z.real();
-      __imag__ _M_value -= __z.imag();
-      return *this;
-    }
-
-  template<typename _Tp>
-    inline complex<long double>&
-    complex<long double>::operator*=(const complex<_Tp>& __z)
-    {
-      _ComplexT __t;
-      __real__ __t = __z.real();
-      __imag__ __t = __z.imag();
-      _M_value *= __t;
-      return *this;
-    }
-
-  template<typename _Tp>
-    inline complex<long double>&
-    complex<long double>::operator/=(const complex<_Tp>& __z)
-    {
-      _ComplexT __t;
-      __real__ __t = __z.real();
-      __imag__ __t = __z.imag();
-      _M_value /= __t;
-      return *this;
-    }
-
-  // These bits have to be at the end of this file, so that the
-  // specializations have all been defined.
-  // ??? No, they have to be there because of compiler limitation at
-  // inlining.  It suffices that class specializations be defined.
-  inline
-  complex<float>::complex(const complex<double>& __z)
-  : _M_value(_ComplexT(__z._M_value)) { }
-
-  inline
-  complex<float>::complex(const complex<long double>& __z)
-  : _M_value(_ComplexT(__z._M_value)) { }
-
-  inline
-  complex<double>::complex(const complex<float>& __z)
-  : _M_value(_ComplexT(__z._M_value)) { }
-
-  inline
-  complex<double>::complex(const complex<long double>& __z)
-  {
-    __real__ _M_value = __z.real();
-    __imag__ _M_value = __z.imag();
-  }
-
-  inline
-  complex<long double>::complex(const complex<float>& __z)
-  : _M_value(_ComplexT(__z._M_value)) { }
-
-  inline
-  complex<long double>::complex(const complex<double>& __z)
-  : _M_value(_ComplexT(__z._M_value)) { }
-} // namespace std
-
-#endif	/* _CPP_COMPLEX */

move complex into lc namespace
diff --git a/src/libLfunction/Lcommon.h b/src/libLfunction/Lcommon.h
index 873778c..8a206a9 100644
--- a/src/libLfunction/Lcommon.h
+++ b/src/libLfunction/Lcommon.h
@@ -6,7 +6,7 @@
 #define precise(T) typename precise<T>::precise_type
 template<class T> struct precise { typedef T precise_type; };
 template<> struct precise<double> { typedef Double precise_type; };
-template<> struct precise<complex<double> > { typedef Complex precise_type; };
+template<> struct precise<lc::complex<double> > { typedef Complex precise_type; };
 template<> struct precise<long long> { typedef long long precise_type; };
 typedef long long Long;
 
diff --git a/src/libLfunction/Lcomplex.h b/src/libLfunction/Lcomplex.h
index 363bbf4..d8f0610 100644
--- a/src/libLfunction/Lcomplex.h
+++ b/src/libLfunction/Lcomplex.h
@@ -40,10 +40,8 @@
  *  in your programs, rather than any of the "st[dl]_*.h" implementation files.
  */
 
-#ifndef _CPP_COMPLEX
-#define _CPP_COMPLEX	1
-
-#pragma GCC system_header
+#ifndef Lcomplex_H
+#define Lcomplex_H
 
 //no longer include:
 //#include <bits/cpp_type_traits.h>  only thing used was is_floating... 
@@ -56,8 +54,19 @@
 #include <cmath>
 #include <sstream>
 
-namespace std
+namespace lc
 {
+  using std::abs;
+  using std::atan2;
+  using std::cos;
+  using std::cosh;
+  using std::sin;
+  using std::sinh;
+  using std::sqrt;
+  using std::exp;
+  using std::log;
+  using std::max;
+
   // Forward declarations
   template<typename _Tp> class complex;
   template<> class complex<float>;
@@ -1193,6 +1202,6 @@ namespace std
   inline
   complex<long double>::complex(const complex<double>& __z)
   : _M_value(_ComplexT(__z._M_value)) { }
-} // namespace std
+} // namespace lc
 
-#endif	/* _CPP_COMPLEX */
+#endif
diff --git a/src/libLfunction/Lglobals.h b/src/libLfunction/Lglobals.h
index 8c6300b..49089de 100644
--- a/src/libLfunction/Lglobals.h
+++ b/src/libLfunction/Lglobals.h
@@ -53,7 +53,7 @@ using namespace std;
 
 
 #include "Lcomplex.h"     //for complex numbers
-typedef complex<Double> Complex;
+typedef lc::complex<Double> Complex;
 
 #include "Lcommon.h"
 
Edited by Reno Dakota