Commit 0b46017a authored by Radford Neal's avatar Radford Neal

further tweaks to doc

parent 9c110536
......@@ -24,7 +24,7 @@
\item Fixed the misleading/ambiguous/incorrect/incomprehensible documentation
on the \code{log}, \code{log.p}, and \code{lower.tail} arguments of
all the density, distribution, and quantile functions for standard
distributions (eg, \code{dgeom}, \code{pgeom}, \code{qgeom}, etc.).
distributions (eg, \code{dgeom}, \code{pgeom}, \code{qgeom}).
\item Fixed a bug involving the "scalar stack" that could affect evaluation
of arithmetic operations when deep recursion has occurred.
}}
......
......@@ -34,8 +34,8 @@ rbeta(n, shape1, shape2, ncp = 0)
\item{log.p}{logical; if TRUE, the quantile function takes the
log of the tail probability, or the distribution function returns the
log of the tail probability.}
\item{lower.tail}{logical; if TRUE (default), tail probabilities are
\eqn{P[X \le x]}, otherwise, \eqn{P[X > x]}.}
\item{lower.tail}{logical; if TRUE (which is the default), tail probabilities
are \eqn{P[X \le x]}, otherwise, \eqn{P[X > x]}.}
}
\details{
The Beta distribution with parameters \code{shape1} \eqn{= a} and
......
......@@ -33,8 +33,8 @@ rbinom(n, size, prob)
\item{log.p}{logical; if TRUE, the quantile function takes the
log of the tail probability, or the distribution function returns the
log of the tail probability. Does not alter the meaning of \code{prob}.}
\item{lower.tail}{logical; if TRUE (default), tail probabilities are
\eqn{P[X \le x]}, otherwise, \eqn{P[X > x]}.}
\item{lower.tail}{logical; if TRUE (which is the default), tail probabilities
are \eqn{P[X \le x]}, otherwise, \eqn{P[X > x]}.}
}
\value{
\code{dbinom} gives the density, \code{pbinom} gives the distribution
......
% File src/library/stats/man/Cauchy.Rd
% Part of the R package, http://www.R-project.org
% Copyright 1995-2007 R Core Team
% Modifications for pqR Copyright (c) 2019 Radford M. Neal.
% Distributed under GPL 2 or later
\name{Cauchy}
......@@ -27,9 +28,12 @@ rcauchy(n, location = 0, scale = 1)
\item{n}{number of observations. If \code{length(n) > 1}, the length
is taken to be the number required.}
\item{location, scale}{location and scale parameters.}
\item{log, log.p}{logical; if TRUE, probabilities p are given as log(p).}
\item{lower.tail}{logical; if TRUE (default), probabilities are
\eqn{P[X \le x]}, otherwise, \eqn{P[X > x]}.}
\item{log}{logical; if TRUE, the log of the density is returned.}
\item{log.p}{logical; if TRUE, the quantile function takes the
log of the tail probability, or the distribution function returns the
log of the tail probability.}
\item{lower.tail}{logical; if TRUE (which is the default), tail probabilities
are \eqn{P[X \le x]}, otherwise, \eqn{P[X > x]}.}
}
\value{
\code{dcauchy}, \code{pcauchy}, and \code{qcauchy} are respectively
......
......@@ -34,8 +34,8 @@ rchisq(n, df, ncp=0)
\item{log.p}{logical; if TRUE, the quantile function takes the
log of the tail probability, or the distribution function returns the
log of the tail probability.}
\item{lower.tail}{logical; if TRUE (default), tail probabilities are
\eqn{P[X \le x]}, otherwise, \eqn{P[X > x]}.}
\item{lower.tail}{logical; if TRUE (which is the default), tail probabilities
are \eqn{P[X \le x]}, otherwise, \eqn{P[X > x]}.}
}
\value{
\code{dchisq} gives the density, \code{pchisq} gives the distribution
......
......@@ -32,8 +32,8 @@ rexp(n, rate = 1)
\item{log.p}{logical; if TRUE, the quantile function takes the
log of the tail probability, or the distribution function returns the
log of the tail probability.}
\item{lower.tail}{logical; if TRUE (default), tail probabilities are
\eqn{P[X \le x]}, otherwise, \eqn{P[X > x]}.}
\item{lower.tail}{logical; if TRUE (which is the default), tail probabilities
are \eqn{P[X \le x]}, otherwise, \eqn{P[X > x]}.}
}
\value{
\code{dexp} gives the density,
......
......@@ -33,8 +33,8 @@ rf(n, df1, df2, ncp)
\item{log.p}{logical; if TRUE, the quantile function takes the
log of the tail probability, or the distribution function returns the
log of the tail probability.}
\item{lower.tail}{logical; if TRUE (default), tail probabilities are
\eqn{P[X \le x]}, otherwise, \eqn{P[X > x]}.}
\item{lower.tail}{logical; if TRUE (which is the default), tail probabilities
are \eqn{P[X \le x]}, otherwise, \eqn{P[X > x]}.}
}
\value{
\code{df} gives the density,
......
......@@ -37,8 +37,8 @@ rgamma(n, shape, rate = 1, scale = 1/rate)
\item{log.p}{logical; if TRUE, the quantile function takes the
log of the tail probability, or the distribution function returns the
log of the tail probability.}
\item{lower.tail}{logical; if TRUE (default), tail probabilities are
\eqn{P[X \le x]}, otherwise, \eqn{P[X > x]}.}
\item{lower.tail}{logical; if TRUE (which is the default), tail probabilities
are \eqn{P[X \le x]}, otherwise, \eqn{P[X > x]}.}
}
\value{
\code{dgamma} gives the density,
......
......@@ -32,8 +32,8 @@ rgeom(n, prob)
\item{log.p}{logical; if TRUE, the quantile function takes the
log of the tail probability, or the distribution function returns the
log of the tail probability. Does not alter the meaning of \code{prob}.}
\item{lower.tail}{logical; if TRUE (default), tail probabilities are
\eqn{P[X \le x]}, otherwise, \eqn{P[X > x]}.}
\item{lower.tail}{logical; if TRUE (which is the default), tail probabilities
are \eqn{P[X \le x]}, otherwise, \eqn{P[X > x]}.}
}
\details{
The geometric distribution with \code{prob} \eqn{= p} has density
......
......@@ -35,8 +35,8 @@ rhyper(nn, m, n, k)
\item{log.p}{logical; if TRUE, the quantile function takes the
log of the tail probability, or the distribution function returns the
log of the tail probability.}
\item{lower.tail}{logical; if TRUE (default), tail probabilities are
\eqn{P[X \le x]}, otherwise, \eqn{P[X > x]}.}
\item{lower.tail}{logical; if TRUE (which is the default), tail probabilities
are \eqn{P[X \le x]}, otherwise, \eqn{P[X > x]}.}
}
\value{
\code{dhyper} gives the density,
......
......@@ -34,8 +34,8 @@ rlogis(n, location = 0, scale = 1)
\item{log.p}{logical; if TRUE, the quantile function takes the
log of the tail probability, or the distribution function returns the
log of the tail probability.}
\item{lower.tail}{logical; if TRUE (default), tail probabilities are
\eqn{P[X \le x]}, otherwise, \eqn{P[X > x]}.}
\item{lower.tail}{logical; if TRUE (which is the default), tail probabilities
are \eqn{P[X \le x]}, otherwise, \eqn{P[X > x]}.}
}
\value{
......
......@@ -33,8 +33,8 @@ rlnorm(n, meanlog = 0, sdlog = 1)
\item{log.p}{logical; if TRUE, the quantile function takes the
log of the tail probability, or the distribution function returns the
log of the tail probability.}
\item{lower.tail}{logical; if TRUE (default), tail probabilities are
\eqn{P[X \le x]}, otherwise, \eqn{P[X > x]}.}
\item{lower.tail}{logical; if TRUE (which is the default), tail probabilities
are \eqn{P[X \le x]}, otherwise, \eqn{P[X > x]}.}
}
\value{
\code{dlnorm} gives the density,
......
......@@ -37,8 +37,8 @@ rnbinom(n, size, prob, mu)
\item{log.p}{logical; if TRUE, the quantile function takes the
log of the tail probability, or the distribution function returns the
log of the tail probability. Does not alter the meaning of \code{prob}.}
\item{lower.tail}{logical; if TRUE (default), tail probabilities are
\eqn{P[X \le x]}, otherwise, \eqn{P[X > x]}.}
\item{lower.tail}{logical; if TRUE (which is the default), tail probabilities
are \eqn{P[X \le x]}, otherwise, \eqn{P[X > x]}.}
}
\details{
The negative binomial distribution with \code{size} \eqn{= n} and
......
......@@ -39,8 +39,8 @@ rnorm(n, mean = 0, sd = 1)
\item{log.p}{logical; if TRUE, the quantile function takes the
log of the tail probability, or the distribution function returns the
log of the tail probability.}
\item{lower.tail}{logical; if TRUE (default), tail probabilities are
\eqn{P[X \le x]} otherwise, \eqn{P[X > x]}.}
\item{lower.tail}{logical; if TRUE (which is the default), tail probabilities
are \eqn{P[X \le x]}, otherwise, \eqn{P[X > x]}.}
}
\value{
\code{dnorm} gives the density,
......
% File src/library/stats/man/Poisson.Rd
% Part of the R package, http://www.R-project.org
% Copyright 1995-2009 R Core Team
% Modifications for pqR Copyright (c) 2019 Radford M. Neal.
% Distributed under GPL 2 or later
\name{Poisson}
......@@ -26,9 +27,12 @@ rpois(n, lambda)
\item{p}{vector of probabilities.}
\item{n}{number of random values to return.}
\item{lambda}{vector of (non-negative) means.}
\item{log, log.p}{logical; if TRUE, probabilities p are given as log(p).}
\item{lower.tail}{logical; if TRUE (default), probabilities are
\eqn{P[X \le x]}, otherwise, \eqn{P[X > x]}.}
\item{log}{logical; if TRUE, the log of the density is returned.}
\item{log.p}{logical; if TRUE, the quantile function takes the
log of the tail probability, or the distribution function returns the
log of the tail probability.}
\item{lower.tail}{logical; if TRUE (which is the default), tail probabilities
are \eqn{P[X \le x]}, otherwise, \eqn{P[X > x]}.}
}
\value{
\code{dpois} gives the (log) density,
......
......@@ -33,8 +33,8 @@ rsignrank(nn, n)
\item{log.p}{logical; if TRUE, the quantile function takes the
log of the tail probability, or the distribution function returns the
log of the tail probability.}
\item{lower.tail}{logical; if TRUE (default), tail probabilities are
\eqn{P[X \le x]}, otherwise, \eqn{P[X > x]}.}
\item{lower.tail}{logical; if TRUE (which is the default), tail probabilities
are \eqn{P[X \le x]}, otherwise, \eqn{P[X > x]}.}
}
\value{
\code{dsignrank} gives the density,
......
......@@ -37,8 +37,8 @@ rt(n, df, ncp)
\item{log.p}{logical; if TRUE, the quantile function takes the
log of the tail probability, or the distribution function returns the
log of the tail probability.}
\item{lower.tail}{logical; if TRUE (default), tail probabilities are
\eqn{P[X \le x]}, otherwise, \eqn{P[X > x]}.}
\item{lower.tail}{logical; if TRUE (which is the default), tail probabilities
are \eqn{P[X \le x]}, otherwise, \eqn{P[X > x]}.}
}
\value{
\code{dt} gives the density,
......
......@@ -26,7 +26,7 @@ qtukey(p, nmeans, df, nranges = 1, lower.tail = TRUE, log.p = FALSE)
\item{nranges}{number of \emph{groups} whose \bold{maximum} range is
considered.}
\item{log.p}{logical; if TRUE, probabilities p are given as log(p).}
\item{lower.tail}{logical; if TRUE (default), probabilities are
\item{lower.tail}{logical; if TRUE (which is the default), probabilities are
\eqn{P[X \le x]}, otherwise, \eqn{P[X > x]}.}
}
\details{
......
% File src/library/stats/man/Uniform.Rd
% Part of the R package, http://www.R-project.org
% Copyright 1995-2010 R Core Team
% Modifications for pqR Copyright (c) 2019 Radford M. Neal.
% Distributed under GPL 2 or later
\name{Uniform}
......@@ -22,9 +23,12 @@ runif(n, min=0, max=1)
\item{n}{number of observations. If \code{length(n) > 1}, the length
is taken to be the number required.}
\item{min,max}{lower and upper limits of the distribution. Must be finite.}
\item{log, log.p}{logical; if TRUE, probabilities p are given as log(p).}
\item{lower.tail}{logical; if TRUE (default), probabilities are
\eqn{P[X \le x]}, otherwise, \eqn{P[X > x]}.}
\item{log}{logical; if TRUE, the log of the density is returned.}
\item{log.p}{logical; if TRUE, the quantile function takes the
log of the tail probability, or the distribution function returns the
log of the tail probability.}
\item{lower.tail}{logical; if TRUE (which is the default), tail probabilities
are \eqn{P[X \le x]}, otherwise, \eqn{P[X > x]}.}
}
\description{
These functions provide information about the uniform distribution
......
......@@ -32,8 +32,8 @@ rweibull(n, shape, scale = 1)
\item{log.p}{logical; if TRUE, the quantile function takes the
log of the tail probability, or the distribution function returns the
log of the tail probability.}
\item{lower.tail}{logical; if TRUE (default), tail probabilities are
\eqn{P[X \le x]}, otherwise, \eqn{P[X > x]}.}
\item{lower.tail}{logical; if TRUE (which is the default), tail probabilities
are \eqn{P[X \le x]}, otherwise, \eqn{P[X > x]}.}
}
\value{
\code{dweibull} gives the density,
......
......@@ -33,8 +33,8 @@ rwilcox(nn, m, n)
\item{log.p}{logical; if TRUE, the quantile function takes the
log of the tail probability, or the distribution function returns the
log of the tail probability.}
\item{lower.tail}{logical; if TRUE (default), tail probabilities are
\eqn{P[X \le x]}, otherwise, \eqn{P[X > x]}.}
\item{lower.tail}{logical; if TRUE (which is the default), tail probabilities
are \eqn{P[X \le x]}, otherwise, \eqn{P[X > x]}.}
}
\value{
\code{dwilcox} gives the density,
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment