crypto_engine.c 12.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/*
 * Handle async block request by crypto hardware engine.
 *
 * Copyright (C) 2016 Linaro, Inc.
 *
 * Author: Baolin Wang <baolin.wang@linaro.org>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by the Free
 * Software Foundation; either version 2 of the License, or (at your option)
 * any later version.
 *
 */

#include <linux/err.h>
#include <linux/delay.h>
17
#include <crypto/engine.h>
18
#include <crypto/internal/hash.h>
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
#include "internal.h"

#define CRYPTO_ENGINE_MAX_QLEN 10

/**
 * crypto_pump_requests - dequeue one request from engine queue to process
 * @engine: the hardware engine
 * @in_kthread: true if we are in the context of the request pump thread
 *
 * This function checks if there is any request in the engine queue that
 * needs processing and if so call out to the driver to initialize hardware
 * and handle each request.
 */
static void crypto_pump_requests(struct crypto_engine *engine,
				 bool in_kthread)
{
	struct crypto_async_request *async_req, *backlog;
36 37
	struct ahash_request *hreq;
	struct ablkcipher_request *breq;
38 39
	unsigned long flags;
	bool was_busy = false;
40
	int ret, rtype;
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84

	spin_lock_irqsave(&engine->queue_lock, flags);

	/* Make sure we are not already running a request */
	if (engine->cur_req)
		goto out;

	/* If another context is idling then defer */
	if (engine->idling) {
		queue_kthread_work(&engine->kworker, &engine->pump_requests);
		goto out;
	}

	/* Check if the engine queue is idle */
	if (!crypto_queue_len(&engine->queue) || !engine->running) {
		if (!engine->busy)
			goto out;

		/* Only do teardown in the thread */
		if (!in_kthread) {
			queue_kthread_work(&engine->kworker,
					   &engine->pump_requests);
			goto out;
		}

		engine->busy = false;
		engine->idling = true;
		spin_unlock_irqrestore(&engine->queue_lock, flags);

		if (engine->unprepare_crypt_hardware &&
		    engine->unprepare_crypt_hardware(engine))
			pr_err("failed to unprepare crypt hardware\n");

		spin_lock_irqsave(&engine->queue_lock, flags);
		engine->idling = false;
		goto out;
	}

	/* Get the fist request from the engine queue to handle */
	backlog = crypto_get_backlog(&engine->queue);
	async_req = crypto_dequeue_request(&engine->queue);
	if (!async_req)
		goto out;

85
	engine->cur_req = async_req;
86 87 88 89 90 91 92 93 94 95
	if (backlog)
		backlog->complete(backlog, -EINPROGRESS);

	if (engine->busy)
		was_busy = true;
	else
		engine->busy = true;

	spin_unlock_irqrestore(&engine->queue_lock, flags);

96
	rtype = crypto_tfm_alg_type(engine->cur_req->tfm);
97 98 99 100 101 102 103 104 105
	/* Until here we get the request need to be encrypted successfully */
	if (!was_busy && engine->prepare_crypt_hardware) {
		ret = engine->prepare_crypt_hardware(engine);
		if (ret) {
			pr_err("failed to prepare crypt hardware\n");
			goto req_err;
		}
	}

106 107 108 109 110 111 112 113 114 115 116 117
	switch (rtype) {
	case CRYPTO_ALG_TYPE_AHASH:
		hreq = ahash_request_cast(engine->cur_req);
		if (engine->prepare_hash_request) {
			ret = engine->prepare_hash_request(engine, hreq);
			if (ret) {
				pr_err("failed to prepare request: %d\n", ret);
				goto req_err;
			}
			engine->cur_req_prepared = true;
		}
		ret = engine->hash_one_request(engine, hreq);
118
		if (ret) {
119
			pr_err("failed to hash one request from queue\n");
120 121
			goto req_err;
		}
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
		return;
	case CRYPTO_ALG_TYPE_ABLKCIPHER:
		breq = ablkcipher_request_cast(engine->cur_req);
		if (engine->prepare_cipher_request) {
			ret = engine->prepare_cipher_request(engine, breq);
			if (ret) {
				pr_err("failed to prepare request: %d\n", ret);
				goto req_err;
			}
			engine->cur_req_prepared = true;
		}
		ret = engine->cipher_one_request(engine, breq);
		if (ret) {
			pr_err("failed to cipher one request from queue\n");
			goto req_err;
		}
		return;
	default:
		pr_err("failed to prepare request of unknown type\n");
		return;
142 143 144
	}

req_err:
145 146 147 148 149 150 151 152 153 154
	switch (rtype) {
	case CRYPTO_ALG_TYPE_AHASH:
		hreq = ahash_request_cast(engine->cur_req);
		crypto_finalize_hash_request(engine, hreq, ret);
		break;
	case CRYPTO_ALG_TYPE_ABLKCIPHER:
		breq = ablkcipher_request_cast(engine->cur_req);
		crypto_finalize_cipher_request(engine, breq, ret);
		break;
	}
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
	return;

out:
	spin_unlock_irqrestore(&engine->queue_lock, flags);
}

static void crypto_pump_work(struct kthread_work *work)
{
	struct crypto_engine *engine =
		container_of(work, struct crypto_engine, pump_requests);

	crypto_pump_requests(engine, true);
}

/**
170 171
 * crypto_transfer_cipher_request - transfer the new request into the
 * enginequeue
172 173 174
 * @engine: the hardware engine
 * @req: the request need to be listed into the engine queue
 */
175 176 177
int crypto_transfer_cipher_request(struct crypto_engine *engine,
				   struct ablkcipher_request *req,
				   bool need_pump)
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
{
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&engine->queue_lock, flags);

	if (!engine->running) {
		spin_unlock_irqrestore(&engine->queue_lock, flags);
		return -ESHUTDOWN;
	}

	ret = ablkcipher_enqueue_request(&engine->queue, req);

	if (!engine->busy && need_pump)
		queue_kthread_work(&engine->kworker, &engine->pump_requests);

	spin_unlock_irqrestore(&engine->queue_lock, flags);
	return ret;
}
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
EXPORT_SYMBOL_GPL(crypto_transfer_cipher_request);

/**
 * crypto_transfer_cipher_request_to_engine - transfer one request to list
 * into the engine queue
 * @engine: the hardware engine
 * @req: the request need to be listed into the engine queue
 */
int crypto_transfer_cipher_request_to_engine(struct crypto_engine *engine,
					     struct ablkcipher_request *req)
{
	return crypto_transfer_cipher_request(engine, req, true);
}
EXPORT_SYMBOL_GPL(crypto_transfer_cipher_request_to_engine);

/**
 * crypto_transfer_hash_request - transfer the new request into the
 * enginequeue
 * @engine: the hardware engine
 * @req: the request need to be listed into the engine queue
 */
int crypto_transfer_hash_request(struct crypto_engine *engine,
				 struct ahash_request *req, bool need_pump)
{
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&engine->queue_lock, flags);

	if (!engine->running) {
		spin_unlock_irqrestore(&engine->queue_lock, flags);
		return -ESHUTDOWN;
	}

	ret = ahash_enqueue_request(&engine->queue, req);

	if (!engine->busy && need_pump)
		queue_kthread_work(&engine->kworker, &engine->pump_requests);

	spin_unlock_irqrestore(&engine->queue_lock, flags);
	return ret;
}
EXPORT_SYMBOL_GPL(crypto_transfer_hash_request);
240 241

/**
242 243
 * crypto_transfer_hash_request_to_engine - transfer one request to list
 * into the engine queue
244 245 246
 * @engine: the hardware engine
 * @req: the request need to be listed into the engine queue
 */
247 248
int crypto_transfer_hash_request_to_engine(struct crypto_engine *engine,
					   struct ahash_request *req)
249
{
250
	return crypto_transfer_hash_request(engine, req, true);
251
}
252
EXPORT_SYMBOL_GPL(crypto_transfer_hash_request_to_engine);
253 254

/**
255
 * crypto_finalize_cipher_request - finalize one request if the request is done
256 257 258 259
 * @engine: the hardware engine
 * @req: the request need to be finalized
 * @err: error number
 */
260 261
void crypto_finalize_cipher_request(struct crypto_engine *engine,
				    struct ablkcipher_request *req, int err)
262 263 264 265 266 267
{
	unsigned long flags;
	bool finalize_cur_req = false;
	int ret;

	spin_lock_irqsave(&engine->queue_lock, flags);
268
	if (engine->cur_req == &req->base)
269 270 271 272
		finalize_cur_req = true;
	spin_unlock_irqrestore(&engine->queue_lock, flags);

	if (finalize_cur_req) {
273 274 275
		if (engine->cur_req_prepared &&
		    engine->unprepare_cipher_request) {
			ret = engine->unprepare_cipher_request(engine, req);
276 277 278
			if (ret)
				pr_err("failed to unprepare request\n");
		}
279 280 281 282 283 284 285
		spin_lock_irqsave(&engine->queue_lock, flags);
		engine->cur_req = NULL;
		engine->cur_req_prepared = false;
		spin_unlock_irqrestore(&engine->queue_lock, flags);
	}

	req->base.complete(&req->base, err);
286

287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
	queue_kthread_work(&engine->kworker, &engine->pump_requests);
}
EXPORT_SYMBOL_GPL(crypto_finalize_cipher_request);

/**
 * crypto_finalize_hash_request - finalize one request if the request is done
 * @engine: the hardware engine
 * @req: the request need to be finalized
 * @err: error number
 */
void crypto_finalize_hash_request(struct crypto_engine *engine,
				  struct ahash_request *req, int err)
{
	unsigned long flags;
	bool finalize_cur_req = false;
	int ret;

	spin_lock_irqsave(&engine->queue_lock, flags);
	if (engine->cur_req == &req->base)
		finalize_cur_req = true;
	spin_unlock_irqrestore(&engine->queue_lock, flags);

	if (finalize_cur_req) {
		if (engine->cur_req_prepared &&
		    engine->unprepare_hash_request) {
			ret = engine->unprepare_hash_request(engine, req);
			if (ret)
				pr_err("failed to unprepare request\n");
		}
316 317 318 319 320 321 322 323 324 325
		spin_lock_irqsave(&engine->queue_lock, flags);
		engine->cur_req = NULL;
		engine->cur_req_prepared = false;
		spin_unlock_irqrestore(&engine->queue_lock, flags);
	}

	req->base.complete(&req->base, err);

	queue_kthread_work(&engine->kworker, &engine->pump_requests);
}
326
EXPORT_SYMBOL_GPL(crypto_finalize_hash_request);
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362

/**
 * crypto_engine_start - start the hardware engine
 * @engine: the hardware engine need to be started
 *
 * Return 0 on success, else on fail.
 */
int crypto_engine_start(struct crypto_engine *engine)
{
	unsigned long flags;

	spin_lock_irqsave(&engine->queue_lock, flags);

	if (engine->running || engine->busy) {
		spin_unlock_irqrestore(&engine->queue_lock, flags);
		return -EBUSY;
	}

	engine->running = true;
	spin_unlock_irqrestore(&engine->queue_lock, flags);

	queue_kthread_work(&engine->kworker, &engine->pump_requests);

	return 0;
}
EXPORT_SYMBOL_GPL(crypto_engine_start);

/**
 * crypto_engine_stop - stop the hardware engine
 * @engine: the hardware engine need to be stopped
 *
 * Return 0 on success, else on fail.
 */
int crypto_engine_stop(struct crypto_engine *engine)
{
	unsigned long flags;
363
	unsigned int limit = 500;
364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
	int ret = 0;

	spin_lock_irqsave(&engine->queue_lock, flags);

	/*
	 * If the engine queue is not empty or the engine is on busy state,
	 * we need to wait for a while to pump the requests of engine queue.
	 */
	while ((crypto_queue_len(&engine->queue) || engine->busy) && limit--) {
		spin_unlock_irqrestore(&engine->queue_lock, flags);
		msleep(20);
		spin_lock_irqsave(&engine->queue_lock, flags);
	}

	if (crypto_queue_len(&engine->queue) || engine->busy)
		ret = -EBUSY;
	else
		engine->running = false;

	spin_unlock_irqrestore(&engine->queue_lock, flags);

	if (ret)
		pr_warn("could not stop engine\n");

	return ret;
}
EXPORT_SYMBOL_GPL(crypto_engine_stop);

/**
 * crypto_engine_alloc_init - allocate crypto hardware engine structure and
 * initialize it.
 * @dev: the device attached with one hardware engine
 * @rt: whether this queue is set to run as a realtime task
 *
 * This must be called from context that can sleep.
 * Return: the crypto engine structure on success, else NULL.
 */
struct crypto_engine *crypto_engine_alloc_init(struct device *dev, bool rt)
{
	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
	struct crypto_engine *engine;

	if (!dev)
		return NULL;

	engine = devm_kzalloc(dev, sizeof(*engine), GFP_KERNEL);
	if (!engine)
		return NULL;

	engine->rt = rt;
	engine->running = false;
	engine->busy = false;
	engine->idling = false;
	engine->cur_req_prepared = false;
	engine->priv_data = dev;
	snprintf(engine->name, sizeof(engine->name),
		 "%s-engine", dev_name(dev));

	crypto_init_queue(&engine->queue, CRYPTO_ENGINE_MAX_QLEN);
	spin_lock_init(&engine->queue_lock);

	init_kthread_worker(&engine->kworker);
	engine->kworker_task = kthread_run(kthread_worker_fn,
					   &engine->kworker, "%s",
					   engine->name);
	if (IS_ERR(engine->kworker_task)) {
		dev_err(dev, "failed to create crypto request pump task\n");
		return NULL;
	}
	init_kthread_work(&engine->pump_requests, crypto_pump_work);

	if (engine->rt) {
		dev_info(dev, "will run requests pump with realtime priority\n");
		sched_setscheduler(engine->kworker_task, SCHED_FIFO, &param);
	}

	return engine;
}
EXPORT_SYMBOL_GPL(crypto_engine_alloc_init);

/**
 * crypto_engine_exit - free the resources of hardware engine when exit
 * @engine: the hardware engine need to be freed
 *
 * Return 0 for success.
 */
int crypto_engine_exit(struct crypto_engine *engine)
{
	int ret;

	ret = crypto_engine_stop(engine);
	if (ret)
		return ret;

	flush_kthread_worker(&engine->kworker);
	kthread_stop(engine->kworker_task);

	return 0;
}
EXPORT_SYMBOL_GPL(crypto_engine_exit);

MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Crypto hardware engine framework");