rtmutex.c 49.6 KB
Newer Older
1 2 3 4 5 6 7 8 9
/*
 * RT-Mutexes: simple blocking mutual exclusion locks with PI support
 *
 * started by Ingo Molnar and Thomas Gleixner.
 *
 *  Copyright (C) 2004-2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *  Copyright (C) 2005-2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
 *  Copyright (C) 2005 Kihon Technologies Inc., Steven Rostedt
 *  Copyright (C) 2006 Esben Nielsen
10
 *
11
 *  See Documentation/locking/rt-mutex-design.txt for details.
12 13
 */
#include <linux/spinlock.h>
14
#include <linux/export.h>
15
#include <linux/sched/signal.h>
16
#include <linux/sched/rt.h>
17
#include <linux/sched/deadline.h>
18
#include <linux/sched/wake_q.h>
19
#include <linux/sched/debug.h>
20 21 22 23 24 25 26
#include <linux/timer.h>

#include "rtmutex_common.h"

/*
 * lock->owner state tracking:
 *
27 28
 * lock->owner holds the task_struct pointer of the owner. Bit 0
 * is used to keep track of the "lock has waiters" state.
29
 *
30 31 32 33 34 35
 * owner	bit0
 * NULL		0	lock is free (fast acquire possible)
 * NULL		1	lock is free and has waiters and the top waiter
 *				is going to take the lock*
 * taskpointer	0	lock is held (fast release possible)
 * taskpointer	1	lock is held and has waiters**
36 37
 *
 * The fast atomic compare exchange based acquire and release is only
38 39 40 41 42 43
 * possible when bit 0 of lock->owner is 0.
 *
 * (*) It also can be a transitional state when grabbing the lock
 * with ->wait_lock is held. To prevent any fast path cmpxchg to the lock,
 * we need to set the bit0 before looking at the lock, and the owner may be
 * NULL in this small time, hence this can be a transitional state.
44
 *
45 46 47 48
 * (**) There is a small time when bit 0 is set but there are no
 * waiters. This can happen when grabbing the lock in the slow path.
 * To prevent a cmpxchg of the owner releasing the lock, we need to
 * set this bit before looking at the lock.
49 50
 */

51
static void
52
rt_mutex_set_owner(struct rt_mutex *lock, struct task_struct *owner)
53
{
54
	unsigned long val = (unsigned long)owner;
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69

	if (rt_mutex_has_waiters(lock))
		val |= RT_MUTEX_HAS_WAITERS;

	lock->owner = (struct task_struct *)val;
}

static inline void clear_rt_mutex_waiters(struct rt_mutex *lock)
{
	lock->owner = (struct task_struct *)
			((unsigned long)lock->owner & ~RT_MUTEX_HAS_WAITERS);
}

static void fixup_rt_mutex_waiters(struct rt_mutex *lock)
{
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
	unsigned long owner, *p = (unsigned long *) &lock->owner;

	if (rt_mutex_has_waiters(lock))
		return;

	/*
	 * The rbtree has no waiters enqueued, now make sure that the
	 * lock->owner still has the waiters bit set, otherwise the
	 * following can happen:
	 *
	 * CPU 0	CPU 1		CPU2
	 * l->owner=T1
	 *		rt_mutex_lock(l)
	 *		lock(l->lock)
	 *		l->owner = T1 | HAS_WAITERS;
	 *		enqueue(T2)
	 *		boost()
	 *		  unlock(l->lock)
	 *		block()
	 *
	 *				rt_mutex_lock(l)
	 *				lock(l->lock)
	 *				l->owner = T1 | HAS_WAITERS;
	 *				enqueue(T3)
	 *				boost()
	 *				  unlock(l->lock)
	 *				block()
	 *		signal(->T2)	signal(->T3)
	 *		lock(l->lock)
	 *		dequeue(T2)
	 *		deboost()
	 *		  unlock(l->lock)
	 *				lock(l->lock)
	 *				dequeue(T3)
	 *				 ==> wait list is empty
	 *				deboost()
	 *				 unlock(l->lock)
	 *		lock(l->lock)
	 *		fixup_rt_mutex_waiters()
	 *		  if (wait_list_empty(l) {
	 *		    l->owner = owner
	 *		    owner = l->owner & ~HAS_WAITERS;
	 *		      ==> l->owner = T1
	 *		  }
	 *				lock(l->lock)
	 * rt_mutex_unlock(l)		fixup_rt_mutex_waiters()
	 *				  if (wait_list_empty(l) {
	 *				    owner = l->owner & ~HAS_WAITERS;
	 * cmpxchg(l->owner, T1, NULL)
	 *  ===> Success (l->owner = NULL)
	 *
	 *				    l->owner = owner
	 *				      ==> l->owner = T1
	 *				  }
	 *
	 * With the check for the waiter bit in place T3 on CPU2 will not
	 * overwrite. All tasks fiddling with the waiters bit are
	 * serialized by l->lock, so nothing else can modify the waiters
	 * bit. If the bit is set then nothing can change l->owner either
	 * so the simple RMW is safe. The cmpxchg() will simply fail if it
	 * happens in the middle of the RMW because the waiters bit is
	 * still set.
	 */
	owner = READ_ONCE(*p);
	if (owner & RT_MUTEX_HAS_WAITERS)
		WRITE_ONCE(*p, owner & ~RT_MUTEX_HAS_WAITERS);
136 137
}

138
/*
139 140
 * We can speed up the acquire/release, if there's no debugging state to be
 * set up.
141
 */
142
#ifndef CONFIG_DEBUG_RT_MUTEXES
143 144 145 146 147 148 149 150 151
# define rt_mutex_cmpxchg_relaxed(l,c,n) (cmpxchg_relaxed(&l->owner, c, n) == c)
# define rt_mutex_cmpxchg_acquire(l,c,n) (cmpxchg_acquire(&l->owner, c, n) == c)
# define rt_mutex_cmpxchg_release(l,c,n) (cmpxchg_release(&l->owner, c, n) == c)

/*
 * Callers must hold the ->wait_lock -- which is the whole purpose as we force
 * all future threads that attempt to [Rmw] the lock to the slowpath. As such
 * relaxed semantics suffice.
 */
152 153 154 155 156 157
static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
{
	unsigned long owner, *p = (unsigned long *) &lock->owner;

	do {
		owner = *p;
158 159
	} while (cmpxchg_relaxed(p, owner,
				 owner | RT_MUTEX_HAS_WAITERS) != owner);
160
}
161 162 163 164 165 166 167

/*
 * Safe fastpath aware unlock:
 * 1) Clear the waiters bit
 * 2) Drop lock->wait_lock
 * 3) Try to unlock the lock with cmpxchg
 */
168 169
static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock,
					unsigned long flags)
170 171 172 173 174
	__releases(lock->wait_lock)
{
	struct task_struct *owner = rt_mutex_owner(lock);

	clear_rt_mutex_waiters(lock);
175
	raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
	/*
	 * If a new waiter comes in between the unlock and the cmpxchg
	 * we have two situations:
	 *
	 * unlock(wait_lock);
	 *					lock(wait_lock);
	 * cmpxchg(p, owner, 0) == owner
	 *					mark_rt_mutex_waiters(lock);
	 *					acquire(lock);
	 * or:
	 *
	 * unlock(wait_lock);
	 *					lock(wait_lock);
	 *					mark_rt_mutex_waiters(lock);
	 *
	 * cmpxchg(p, owner, 0) != owner
	 *					enqueue_waiter();
	 *					unlock(wait_lock);
	 * lock(wait_lock);
	 * wake waiter();
	 * unlock(wait_lock);
	 *					lock(wait_lock);
	 *					acquire(lock);
	 */
200
	return rt_mutex_cmpxchg_release(lock, owner, NULL);
201 202
}

203
#else
204 205 206 207
# define rt_mutex_cmpxchg_relaxed(l,c,n)	(0)
# define rt_mutex_cmpxchg_acquire(l,c,n)	(0)
# define rt_mutex_cmpxchg_release(l,c,n)	(0)

208 209 210 211 212
static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
{
	lock->owner = (struct task_struct *)
			((unsigned long)lock->owner | RT_MUTEX_HAS_WAITERS);
}
213 214 215 216

/*
 * Simple slow path only version: lock->owner is protected by lock->wait_lock.
 */
217 218
static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock,
					unsigned long flags)
219 220 221
	__releases(lock->wait_lock)
{
	lock->owner = NULL;
222
	raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
223 224
	return true;
}
225 226
#endif

227 228 229 230 231 232
/*
 * Only use with rt_mutex_waiter_{less,equal}()
 */
#define task_to_waiter(p)	\
	&(struct rt_mutex_waiter){ .prio = (p)->prio, .deadline = (p)->dl.deadline }

233 234 235 236
static inline int
rt_mutex_waiter_less(struct rt_mutex_waiter *left,
		     struct rt_mutex_waiter *right)
{
237
	if (left->prio < right->prio)
238 239 240
		return 1;

	/*
241 242 243 244
	 * If both waiters have dl_prio(), we check the deadlines of the
	 * associated tasks.
	 * If left waiter has a dl_prio(), and we didn't return 1 above,
	 * then right waiter has a dl_prio() too.
245
	 */
246
	if (dl_prio(left->prio))
247
		return dl_time_before(left->deadline, right->deadline);
248 249 250 251

	return 0;
}

252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
static inline int
rt_mutex_waiter_equal(struct rt_mutex_waiter *left,
		      struct rt_mutex_waiter *right)
{
	if (left->prio != right->prio)
		return 0;

	/*
	 * If both waiters have dl_prio(), we check the deadlines of the
	 * associated tasks.
	 * If left waiter has a dl_prio(), and we didn't return 0 above,
	 * then right waiter has a dl_prio() too.
	 */
	if (dl_prio(left->prio))
		return left->deadline == right->deadline;

	return 1;
}

271 272 273
static void
rt_mutex_enqueue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
{
274
	struct rb_node **link = &lock->waiters.rb_root.rb_node;
275 276
	struct rb_node *parent = NULL;
	struct rt_mutex_waiter *entry;
277
	bool leftmost = true;
278 279 280 281 282 283 284 285

	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct rt_mutex_waiter, tree_entry);
		if (rt_mutex_waiter_less(waiter, entry)) {
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
286
			leftmost = false;
287 288 289 290
		}
	}

	rb_link_node(&waiter->tree_entry, parent, link);
291
	rb_insert_color_cached(&waiter->tree_entry, &lock->waiters, leftmost);
292 293 294 295 296 297 298 299
}

static void
rt_mutex_dequeue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
{
	if (RB_EMPTY_NODE(&waiter->tree_entry))
		return;

300
	rb_erase_cached(&waiter->tree_entry, &lock->waiters);
301 302 303 304 305 306
	RB_CLEAR_NODE(&waiter->tree_entry);
}

static void
rt_mutex_enqueue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
{
307
	struct rb_node **link = &task->pi_waiters.rb_root.rb_node;
308 309
	struct rb_node *parent = NULL;
	struct rt_mutex_waiter *entry;
310
	bool leftmost = true;
311 312 313 314 315 316 317 318

	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct rt_mutex_waiter, pi_tree_entry);
		if (rt_mutex_waiter_less(waiter, entry)) {
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
319
			leftmost = false;
320 321 322 323
		}
	}

	rb_link_node(&waiter->pi_tree_entry, parent, link);
324
	rb_insert_color_cached(&waiter->pi_tree_entry, &task->pi_waiters, leftmost);
325 326 327 328 329 330 331 332
}

static void
rt_mutex_dequeue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
{
	if (RB_EMPTY_NODE(&waiter->pi_tree_entry))
		return;

333
	rb_erase_cached(&waiter->pi_tree_entry, &task->pi_waiters);
334 335 336
	RB_CLEAR_NODE(&waiter->pi_tree_entry);
}

337
static void rt_mutex_adjust_prio(struct task_struct *p)
338
{
339
	struct task_struct *pi_task = NULL;
340

341
	lockdep_assert_held(&p->pi_lock);
342

343 344
	if (task_has_pi_waiters(p))
		pi_task = task_top_pi_waiter(p)->task;
345

346
	rt_mutex_setprio(p, pi_task);
347 348
}

349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
/*
 * Deadlock detection is conditional:
 *
 * If CONFIG_DEBUG_RT_MUTEXES=n, deadlock detection is only conducted
 * if the detect argument is == RT_MUTEX_FULL_CHAINWALK.
 *
 * If CONFIG_DEBUG_RT_MUTEXES=y, deadlock detection is always
 * conducted independent of the detect argument.
 *
 * If the waiter argument is NULL this indicates the deboost path and
 * deadlock detection is disabled independent of the detect argument
 * and the config settings.
 */
static bool rt_mutex_cond_detect_deadlock(struct rt_mutex_waiter *waiter,
					  enum rtmutex_chainwalk chwalk)
{
	/*
	 * This is just a wrapper function for the following call,
	 * because debug_rt_mutex_detect_deadlock() smells like a magic
	 * debug feature and I wanted to keep the cond function in the
	 * main source file along with the comments instead of having
	 * two of the same in the headers.
	 */
	return debug_rt_mutex_detect_deadlock(waiter, chwalk);
}

375 376 377 378 379
/*
 * Max number of times we'll walk the boosting chain:
 */
int max_lock_depth = 1024;

380 381 382 383 384
static inline struct rt_mutex *task_blocked_on_lock(struct task_struct *p)
{
	return p->pi_blocked_on ? p->pi_blocked_on->lock : NULL;
}

385 386 387
/*
 * Adjust the priority chain. Also used for deadlock detection.
 * Decreases task's usage by one - may thus free the task.
388
 *
389 390
 * @task:	the task owning the mutex (owner) for which a chain walk is
 *		probably needed
391
 * @chwalk:	do we have to carry out deadlock detection?
392 393 394 395 396 397
 * @orig_lock:	the mutex (can be NULL if we are walking the chain to recheck
 *		things for a task that has just got its priority adjusted, and
 *		is waiting on a mutex)
 * @next_lock:	the mutex on which the owner of @orig_lock was blocked before
 *		we dropped its pi_lock. Is never dereferenced, only used for
 *		comparison to detect lock chain changes.
398
 * @orig_waiter: rt_mutex_waiter struct for the task that has just donated
399 400 401 402
 *		its priority to the mutex owner (can be NULL in the case
 *		depicted above or if the top waiter is gone away and we are
 *		actually deboosting the owner)
 * @top_task:	the current top waiter
403
 *
404
 * Returns 0 or -EDEADLK.
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
 *
 * Chain walk basics and protection scope
 *
 * [R] refcount on task
 * [P] task->pi_lock held
 * [L] rtmutex->wait_lock held
 *
 * Step	Description				Protected by
 *	function arguments:
 *	@task					[R]
 *	@orig_lock if != NULL			@top_task is blocked on it
 *	@next_lock				Unprotected. Cannot be
 *						dereferenced. Only used for
 *						comparison.
 *	@orig_waiter if != NULL			@top_task is blocked on it
 *	@top_task				current, or in case of proxy
 *						locking protected by calling
 *						code
 *	again:
 *	  loop_sanity_check();
 *	retry:
 * [1]	  lock(task->pi_lock);			[R] acquire [P]
 * [2]	  waiter = task->pi_blocked_on;		[P]
 * [3]	  check_exit_conditions_1();		[P]
 * [4]	  lock = waiter->lock;			[P]
 * [5]	  if (!try_lock(lock->wait_lock)) {	[P] try to acquire [L]
 *	    unlock(task->pi_lock);		release [P]
 *	    goto retry;
 *	  }
 * [6]	  check_exit_conditions_2();		[P] + [L]
 * [7]	  requeue_lock_waiter(lock, waiter);	[P] + [L]
 * [8]	  unlock(task->pi_lock);		release [P]
 *	  put_task_struct(task);		release [R]
 * [9]	  check_exit_conditions_3();		[L]
 * [10]	  task = owner(lock);			[L]
 *	  get_task_struct(task);		[L] acquire [R]
 *	  lock(task->pi_lock);			[L] acquire [P]
 * [11]	  requeue_pi_waiter(tsk, waiters(lock));[P] + [L]
 * [12]	  check_exit_conditions_4();		[P] + [L]
 * [13]	  unlock(task->pi_lock);		release [P]
 *	  unlock(lock->wait_lock);		release [L]
 *	  goto again;
447
 */
448
static int rt_mutex_adjust_prio_chain(struct task_struct *task,
449
				      enum rtmutex_chainwalk chwalk,
450
				      struct rt_mutex *orig_lock,
451
				      struct rt_mutex *next_lock,
452 453
				      struct rt_mutex_waiter *orig_waiter,
				      struct task_struct *top_task)
454 455
{
	struct rt_mutex_waiter *waiter, *top_waiter = orig_waiter;
456
	struct rt_mutex_waiter *prerequeue_top_waiter;
457
	int ret = 0, depth = 0;
458
	struct rt_mutex *lock;
459
	bool detect_deadlock;
460
	bool requeue = true;
461

462
	detect_deadlock = rt_mutex_cond_detect_deadlock(orig_waiter, chwalk);
463 464 465 466 467 468 469 470

	/*
	 * The (de)boosting is a step by step approach with a lot of
	 * pitfalls. We want this to be preemptible and we want hold a
	 * maximum of two locks per step. So we have to check
	 * carefully whether things change under us.
	 */
 again:
471 472 473
	/*
	 * We limit the lock chain length for each invocation.
	 */
474 475 476 477 478 479 480 481 482 483 484
	if (++depth > max_lock_depth) {
		static int prev_max;

		/*
		 * Print this only once. If the admin changes the limit,
		 * print a new message when reaching the limit again.
		 */
		if (prev_max != max_lock_depth) {
			prev_max = max_lock_depth;
			printk(KERN_WARNING "Maximum lock depth %d reached "
			       "task: %s (%d)\n", max_lock_depth,
485
			       top_task->comm, task_pid_nr(top_task));
486 487 488
		}
		put_task_struct(task);

489
		return -EDEADLK;
490
	}
491 492 493 494 495 496 497

	/*
	 * We are fully preemptible here and only hold the refcount on
	 * @task. So everything can have changed under us since the
	 * caller or our own code below (goto retry/again) dropped all
	 * locks.
	 */
498 499
 retry:
	/*
500
	 * [1] Task cannot go away as we did a get_task() before !
501
	 */
502
	raw_spin_lock_irq(&task->pi_lock);
503

504 505 506
	/*
	 * [2] Get the waiter on which @task is blocked on.
	 */
507
	waiter = task->pi_blocked_on;
508 509 510 511 512

	/*
	 * [3] check_exit_conditions_1() protected by task->pi_lock.
	 */

513 514 515 516 517
	/*
	 * Check whether the end of the boosting chain has been
	 * reached or the state of the chain has changed while we
	 * dropped the locks.
	 */
518
	if (!waiter)
519 520
		goto out_unlock_pi;

521 522
	/*
	 * Check the orig_waiter state. After we dropped the locks,
523
	 * the previous owner of the lock might have released the lock.
524
	 */
525
	if (orig_waiter && !rt_mutex_owner(orig_lock))
526 527
		goto out_unlock_pi;

528 529 530 531 532 533 534 535 536 537 538 539
	/*
	 * We dropped all locks after taking a refcount on @task, so
	 * the task might have moved on in the lock chain or even left
	 * the chain completely and blocks now on an unrelated lock or
	 * on @orig_lock.
	 *
	 * We stored the lock on which @task was blocked in @next_lock,
	 * so we can detect the chain change.
	 */
	if (next_lock != waiter->lock)
		goto out_unlock_pi;

540 541 542 543 544
	/*
	 * Drop out, when the task has no waiters. Note,
	 * top_waiter can be NULL, when we are in the deboosting
	 * mode!
	 */
545 546 547 548 549
	if (top_waiter) {
		if (!task_has_pi_waiters(task))
			goto out_unlock_pi;
		/*
		 * If deadlock detection is off, we stop here if we
550 551 552
		 * are not the top pi waiter of the task. If deadlock
		 * detection is enabled we continue, but stop the
		 * requeueing in the chain walk.
553
		 */
554 555 556 557 558 559
		if (top_waiter != task_top_pi_waiter(task)) {
			if (!detect_deadlock)
				goto out_unlock_pi;
			else
				requeue = false;
		}
560
	}
561 562

	/*
563 564 565 566 567
	 * If the waiter priority is the same as the task priority
	 * then there is no further priority adjustment necessary.  If
	 * deadlock detection is off, we stop the chain walk. If its
	 * enabled we continue, but stop the requeueing in the chain
	 * walk.
568
	 */
569
	if (rt_mutex_waiter_equal(waiter, task_to_waiter(task))) {
570 571 572 573 574
		if (!detect_deadlock)
			goto out_unlock_pi;
		else
			requeue = false;
	}
575

576 577 578
	/*
	 * [4] Get the next lock
	 */
579
	lock = waiter->lock;
580 581 582 583 584
	/*
	 * [5] We need to trylock here as we are holding task->pi_lock,
	 * which is the reverse lock order versus the other rtmutex
	 * operations.
	 */
585
	if (!raw_spin_trylock(&lock->wait_lock)) {
586
		raw_spin_unlock_irq(&task->pi_lock);
587 588 589 590
		cpu_relax();
		goto retry;
	}

591
	/*
592 593 594
	 * [6] check_exit_conditions_2() protected by task->pi_lock and
	 * lock->wait_lock.
	 *
595 596 597 598 599
	 * Deadlock detection. If the lock is the same as the original
	 * lock which caused us to walk the lock chain or if the
	 * current lock is owned by the task which initiated the chain
	 * walk, we detected a deadlock.
	 */
600
	if (lock == orig_lock || rt_mutex_owner(lock) == top_task) {
601
		debug_rt_mutex_deadlock(chwalk, orig_waiter, lock);
602
		raw_spin_unlock(&lock->wait_lock);
603
		ret = -EDEADLK;
604 605 606
		goto out_unlock_pi;
	}

607 608 609 610 611 612 613 614 615 616
	/*
	 * If we just follow the lock chain for deadlock detection, no
	 * need to do all the requeue operations. To avoid a truckload
	 * of conditionals around the various places below, just do the
	 * minimum chain walk checks.
	 */
	if (!requeue) {
		/*
		 * No requeue[7] here. Just release @task [8]
		 */
617
		raw_spin_unlock(&task->pi_lock);
618 619 620 621 622 623 624
		put_task_struct(task);

		/*
		 * [9] check_exit_conditions_3 protected by lock->wait_lock.
		 * If there is no owner of the lock, end of chain.
		 */
		if (!rt_mutex_owner(lock)) {
625
			raw_spin_unlock_irq(&lock->wait_lock);
626 627 628 629 630 631
			return 0;
		}

		/* [10] Grab the next task, i.e. owner of @lock */
		task = rt_mutex_owner(lock);
		get_task_struct(task);
632
		raw_spin_lock(&task->pi_lock);
633 634 635 636 637 638 639 640 641 642 643 644 645 646

		/*
		 * No requeue [11] here. We just do deadlock detection.
		 *
		 * [12] Store whether owner is blocked
		 * itself. Decision is made after dropping the locks
		 */
		next_lock = task_blocked_on_lock(task);
		/*
		 * Get the top waiter for the next iteration
		 */
		top_waiter = rt_mutex_top_waiter(lock);

		/* [13] Drop locks */
647 648
		raw_spin_unlock(&task->pi_lock);
		raw_spin_unlock_irq(&lock->wait_lock);
649 650 651 652 653 654 655

		/* If owner is not blocked, end of chain. */
		if (!next_lock)
			goto out_put_task;
		goto again;
	}

656 657 658 659 660 661
	/*
	 * Store the current top waiter before doing the requeue
	 * operation on @lock. We need it for the boost/deboost
	 * decision below.
	 */
	prerequeue_top_waiter = rt_mutex_top_waiter(lock);
662

663
	/* [7] Requeue the waiter in the lock waiter tree. */
664
	rt_mutex_dequeue(lock, waiter);
665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681

	/*
	 * Update the waiter prio fields now that we're dequeued.
	 *
	 * These values can have changed through either:
	 *
	 *   sys_sched_set_scheduler() / sys_sched_setattr()
	 *
	 * or
	 *
	 *   DL CBS enforcement advancing the effective deadline.
	 *
	 * Even though pi_waiters also uses these fields, and that tree is only
	 * updated in [11], we can do this here, since we hold [L], which
	 * serializes all pi_waiters access and rb_erase() does not care about
	 * the values of the node being removed.
	 */
682
	waiter->prio = task->prio;
683 684
	waiter->deadline = task->dl.deadline;

685
	rt_mutex_enqueue(lock, waiter);
686

687
	/* [8] Release the task */
688
	raw_spin_unlock(&task->pi_lock);
689 690
	put_task_struct(task);

691
	/*
692 693
	 * [9] check_exit_conditions_3 protected by lock->wait_lock.
	 *
694 695 696 697
	 * We must abort the chain walk if there is no lock owner even
	 * in the dead lock detection case, as we have nothing to
	 * follow here. This is the end of the chain we are walking.
	 */
698 699
	if (!rt_mutex_owner(lock)) {
		/*
700 701 702
		 * If the requeue [7] above changed the top waiter,
		 * then we need to wake the new top waiter up to try
		 * to get the lock.
703
		 */
704
		if (prerequeue_top_waiter != rt_mutex_top_waiter(lock))
705
			wake_up_process(rt_mutex_top_waiter(lock)->task);
706
		raw_spin_unlock_irq(&lock->wait_lock);
707
		return 0;
708
	}
709

710
	/* [10] Grab the next task, i.e. the owner of @lock */
711
	task = rt_mutex_owner(lock);
712
	get_task_struct(task);
713
	raw_spin_lock(&task->pi_lock);
714

715
	/* [11] requeue the pi waiters if necessary */
716
	if (waiter == rt_mutex_top_waiter(lock)) {
717 718 719
		/*
		 * The waiter became the new top (highest priority)
		 * waiter on the lock. Replace the previous top waiter
720
		 * in the owner tasks pi waiters tree with this waiter
721 722 723
		 * and adjust the priority of the owner.
		 */
		rt_mutex_dequeue_pi(task, prerequeue_top_waiter);
724
		rt_mutex_enqueue_pi(task, waiter);
725
		rt_mutex_adjust_prio(task);
726

727 728 729 730
	} else if (prerequeue_top_waiter == waiter) {
		/*
		 * The waiter was the top waiter on the lock, but is
		 * no longer the top prority waiter. Replace waiter in
731
		 * the owner tasks pi waiters tree with the new top
732 733 734 735 736 737
		 * (highest priority) waiter and adjust the priority
		 * of the owner.
		 * The new top waiter is stored in @waiter so that
		 * @waiter == @top_waiter evaluates to true below and
		 * we continue to deboost the rest of the chain.
		 */
738
		rt_mutex_dequeue_pi(task, waiter);
739
		waiter = rt_mutex_top_waiter(lock);
740
		rt_mutex_enqueue_pi(task, waiter);
741
		rt_mutex_adjust_prio(task);
742 743 744 745 746
	} else {
		/*
		 * Nothing changed. No need to do any priority
		 * adjustment.
		 */
747 748
	}

749
	/*
750 751 752 753
	 * [12] check_exit_conditions_4() protected by task->pi_lock
	 * and lock->wait_lock. The actual decisions are made after we
	 * dropped the locks.
	 *
754 755 756 757 758 759
	 * Check whether the task which owns the current lock is pi
	 * blocked itself. If yes we store a pointer to the lock for
	 * the lock chain change detection above. After we dropped
	 * task->pi_lock next_lock cannot be dereferenced anymore.
	 */
	next_lock = task_blocked_on_lock(task);
760 761 762 763
	/*
	 * Store the top waiter of @lock for the end of chain walk
	 * decision below.
	 */
764
	top_waiter = rt_mutex_top_waiter(lock);
765 766

	/* [13] Drop the locks */
767 768
	raw_spin_unlock(&task->pi_lock);
	raw_spin_unlock_irq(&lock->wait_lock);
769

770
	/*
771 772 773
	 * Make the actual exit decisions [12], based on the stored
	 * values.
	 *
774 775 776 777 778 779
	 * We reached the end of the lock chain. Stop right here. No
	 * point to go back just to figure that out.
	 */
	if (!next_lock)
		goto out_put_task;

780 781 782 783 784
	/*
	 * If the current waiter is not the top waiter on the lock,
	 * then we can stop the chain walk here if we are not in full
	 * deadlock detection mode.
	 */
785 786 787 788 789 790
	if (!detect_deadlock && waiter != top_waiter)
		goto out_put_task;

	goto again;

 out_unlock_pi:
791
	raw_spin_unlock_irq(&task->pi_lock);
792 793
 out_put_task:
	put_task_struct(task);
794

795 796 797 798 799 800
	return ret;
}

/*
 * Try to take an rt-mutex
 *
801
 * Must be called with lock->wait_lock held and interrupts disabled
802
 *
803 804
 * @lock:   The lock to be acquired.
 * @task:   The task which wants to acquire the lock
805
 * @waiter: The waiter that is queued to the lock's wait tree if the
806
 *	    callsite called task_blocked_on_lock(), otherwise NULL
807
 */
808
static int try_to_take_rt_mutex(struct rt_mutex *lock, struct task_struct *task,
809
				struct rt_mutex_waiter *waiter)
810
{
811 812
	lockdep_assert_held(&lock->wait_lock);

813
	/*
814 815 816 817
	 * Before testing whether we can acquire @lock, we set the
	 * RT_MUTEX_HAS_WAITERS bit in @lock->owner. This forces all
	 * other tasks which try to modify @lock into the slow path
	 * and they serialize on @lock->wait_lock.
818
	 *
819 820
	 * The RT_MUTEX_HAS_WAITERS bit can have a transitional state
	 * as explained at the top of this file if and only if:
821
	 *
822 823 824 825 826 827 828
	 * - There is a lock owner. The caller must fixup the
	 *   transient state if it does a trylock or leaves the lock
	 *   function due to a signal or timeout.
	 *
	 * - @task acquires the lock and there are no other
	 *   waiters. This is undone in rt_mutex_set_owner(@task) at
	 *   the end of this function.
829 830 831
	 */
	mark_rt_mutex_waiters(lock);

832 833 834
	/*
	 * If @lock has an owner, give up.
	 */
835
	if (rt_mutex_owner(lock))
836 837
		return 0;

838
	/*
839
	 * If @waiter != NULL, @task has already enqueued the waiter
840
	 * into @lock waiter tree. If @waiter == NULL then this is a
841
	 * trylock attempt.
842
	 */
843 844 845 846 847 848 849
	if (waiter) {
		/*
		 * If waiter is not the highest priority waiter of
		 * @lock, give up.
		 */
		if (waiter != rt_mutex_top_waiter(lock))
			return 0;
850

851 852
		/*
		 * We can acquire the lock. Remove the waiter from the
853
		 * lock waiters tree.
854 855
		 */
		rt_mutex_dequeue(lock, waiter);
856

857
	} else {
858
		/*
859 860 861 862 863 864
		 * If the lock has waiters already we check whether @task is
		 * eligible to take over the lock.
		 *
		 * If there are no other waiters, @task can acquire
		 * the lock.  @task->pi_blocked_on is NULL, so it does
		 * not need to be dequeued.
865 866
		 */
		if (rt_mutex_has_waiters(lock)) {
867 868 869 870 871
			/*
			 * If @task->prio is greater than or equal to
			 * the top waiter priority (kernel view),
			 * @task lost.
			 */
872 873
			if (!rt_mutex_waiter_less(task_to_waiter(task),
						  rt_mutex_top_waiter(lock)))
874 875 876 877 878 879 880 881 882 883 884 885
				return 0;

			/*
			 * The current top waiter stays enqueued. We
			 * don't have to change anything in the lock
			 * waiters order.
			 */
		} else {
			/*
			 * No waiters. Take the lock without the
			 * pi_lock dance.@task->pi_blocked_on is NULL
			 * and we have no waiters to enqueue in @task
886
			 * pi waiters tree.
887 888
			 */
			goto takeit;
889 890 891
		}
	}

892 893 894 895 896 897
	/*
	 * Clear @task->pi_blocked_on. Requires protection by
	 * @task->pi_lock. Redundant operation for the @waiter == NULL
	 * case, but conditionals are more expensive than a redundant
	 * store.
	 */
898
	raw_spin_lock(&task->pi_lock);
899 900 901 902
	task->pi_blocked_on = NULL;
	/*
	 * Finish the lock acquisition. @task is the new owner. If
	 * other waiters exist we have to insert the highest priority
903
	 * waiter into @task->pi_waiters tree.
904 905 906
	 */
	if (rt_mutex_has_waiters(lock))
		rt_mutex_enqueue_pi(task, rt_mutex_top_waiter(lock));
907
	raw_spin_unlock(&task->pi_lock);
908 909

takeit:
910
	/* We got the lock. */
911
	debug_rt_mutex_lock(lock);
912

913 914 915 916
	/*
	 * This either preserves the RT_MUTEX_HAS_WAITERS bit if there
	 * are still waiters or clears it.
	 */
917
	rt_mutex_set_owner(lock, task);
918 919 920 921 922 923 924 925 926

	return 1;
}

/*
 * Task blocks on lock.
 *
 * Prepare waiter and propagate pi chain
 *
927
 * This must be called with lock->wait_lock held and interrupts disabled
928 929 930
 */
static int task_blocks_on_rt_mutex(struct rt_mutex *lock,
				   struct rt_mutex_waiter *waiter,
931
				   struct task_struct *task,
932
				   enum rtmutex_chainwalk chwalk)
933
{
934
	struct task_struct *owner = rt_mutex_owner(lock);
935
	struct rt_mutex_waiter *top_waiter = waiter;
936
	struct rt_mutex *next_lock;
937
	int chain_walk = 0, res;
938

939 940
	lockdep_assert_held(&lock->wait_lock);

941 942 943 944 945 946 947 948 949
	/*
	 * Early deadlock detection. We really don't want the task to
	 * enqueue on itself just to untangle the mess later. It's not
	 * only an optimization. We drop the locks, so another waiter
	 * can come in before the chain walk detects the deadlock. So
	 * the other will detect the deadlock and return -EDEADLOCK,
	 * which is wrong, as the other waiter is not in a deadlock
	 * situation.
	 */
950
	if (owner == task)
951 952
		return -EDEADLK;

953
	raw_spin_lock(&task->pi_lock);
954
	waiter->task = task;
955
	waiter->lock = lock;
956
	waiter->prio = task->prio;
957
	waiter->deadline = task->dl.deadline;
958 959 960 961

	/* Get the top priority waiter on the lock */
	if (rt_mutex_has_waiters(lock))
		top_waiter = rt_mutex_top_waiter(lock);
962
	rt_mutex_enqueue(lock, waiter);
963

964
	task->pi_blocked_on = waiter;
965

966
	raw_spin_unlock(&task->pi_lock);
967

968 969 970
	if (!owner)
		return 0;

971
	raw_spin_lock(&owner->pi_lock);
972
	if (waiter == rt_mutex_top_waiter(lock)) {
973 974
		rt_mutex_dequeue_pi(owner, top_waiter);
		rt_mutex_enqueue_pi(owner, waiter);
975

976
		rt_mutex_adjust_prio(owner);
977 978
		if (owner->pi_blocked_on)
			chain_walk = 1;
979
	} else if (rt_mutex_cond_detect_deadlock(waiter, chwalk)) {
980
		chain_walk = 1;
981
	}
982

983 984 985
	/* Store the lock on which owner is blocked or NULL */
	next_lock = task_blocked_on_lock(owner);

986
	raw_spin_unlock(&owner->pi_lock);
987 988 989 990 991 992
	/*
	 * Even if full deadlock detection is on, if the owner is not
	 * blocked itself, we can avoid finding this out in the chain
	 * walk.
	 */
	if (!chain_walk || !next_lock)
993 994
		return 0;

995 996 997 998 999 1000 1001
	/*
	 * The owner can't disappear while holding a lock,
	 * so the owner struct is protected by wait_lock.
	 * Gets dropped in rt_mutex_adjust_prio_chain()!
	 */
	get_task_struct(owner);

1002
	raw_spin_unlock_irq(&lock->wait_lock);
1003

1004
	res = rt_mutex_adjust_prio_chain(owner, chwalk, lock,
1005
					 next_lock, waiter, task);
1006

1007
	raw_spin_lock_irq(&lock->wait_lock);
1008 1009 1010 1011 1012

	return res;
}

/*
1013
 * Remove the top waiter from the current tasks pi waiter tree and
1014
 * queue it up.
1015
 *
1016
 * Called with lock->wait_lock held and interrupts disabled.
1017
 */
1018 1019
static void mark_wakeup_next_waiter(struct wake_q_head *wake_q,
				    struct rt_mutex *lock)
1020 1021 1022
{
	struct rt_mutex_waiter *waiter;

1023
	raw_spin_lock(&current->pi_lock);
1024 1025 1026 1027

	waiter = rt_mutex_top_waiter(lock);

	/*
1028 1029 1030 1031 1032
	 * Remove it from current->pi_waiters and deboost.
	 *
	 * We must in fact deboost here in order to ensure we call
	 * rt_mutex_setprio() to update p->pi_top_task before the
	 * task unblocks.
1033
	 */
1034
	rt_mutex_dequeue_pi(current, waiter);
1035
	rt_mutex_adjust_prio(current);
1036

1037 1038 1039 1040 1041 1042 1043 1044 1045
	/*
	 * As we are waking up the top waiter, and the waiter stays
	 * queued on the lock until it gets the lock, this lock
	 * obviously has waiters. Just set the bit here and this has
	 * the added benefit of forcing all new tasks into the
	 * slow path making sure no task of lower priority than
	 * the top waiter can steal this lock.
	 */
	lock->owner = (void *) RT_MUTEX_HAS_WAITERS;
1046

1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
	/*
	 * We deboosted before waking the top waiter task such that we don't
	 * run two tasks with the 'same' priority (and ensure the
	 * p->pi_top_task pointer points to a blocked task). This however can
	 * lead to priority inversion if we would get preempted after the
	 * deboost but before waking our donor task, hence the preempt_disable()
	 * before unlock.
	 *
	 * Pairs with preempt_enable() in rt_mutex_postunlock();
	 */
	preempt_disable();
1058
	wake_q_add(wake_q, waiter->task);
1059
	raw_spin_unlock(&current->pi_lock);
1060 1061 1062
}

/*
1063
 * Remove a waiter from a lock and give up
1064
 *
1065
 * Must be called with lock->wait_lock held and interrupts disabled. I must
1066
 * have just failed to try_to_take_rt_mutex().
1067
 */
1068 1069
static void remove_waiter(struct rt_mutex *lock,
			  struct rt_mutex_waiter *waiter)
1070
{
1071
	bool is_top_waiter = (waiter == rt_mutex_top_waiter(lock));
1072
	struct task_struct *owner = rt_mutex_owner(lock);
1073
	struct rt_mutex *next_lock;
1074

1075 1076
	lockdep_assert_held(&lock->wait_lock);

1077
	raw_spin_lock(&current->pi_lock);
1078
	rt_mutex_dequeue(lock, waiter);
1079
	current->pi_blocked_on = NULL;
1080
	raw_spin_unlock(&current->pi_lock);
1081

1082 1083 1084 1085 1086
	/*
	 * Only update priority if the waiter was the highest priority
	 * waiter of the lock and there is an owner to update.
	 */
	if (!owner || !is_top_waiter)
1087 1088
		return;

1089
	raw_spin_lock(&owner->pi_lock);
1090

1091
	rt_mutex_dequeue_pi(owner, waiter);
1092

1093 1094
	if (rt_mutex_has_waiters(lock))
		rt_mutex_enqueue_pi(owner, rt_mutex_top_waiter(lock));
1095

1096
	rt_mutex_adjust_prio(owner);
1097

1098 1099
	/* Store the lock on which owner is blocked or NULL */
	next_lock = task_blocked_on_lock(owner);
1100

1101
	raw_spin_unlock(&owner->pi_lock);
1102

1103 1104 1105 1106
	/*
	 * Don't walk the chain, if the owner task is not blocked
	 * itself.
	 */
1107
	if (!next_lock)
1108 1109
		return;

1110 1111 1112
	/* gets dropped in rt_mutex_adjust_prio_chain()! */
	get_task_struct(owner);

1113
	raw_spin_unlock_irq(&lock->wait_lock);
1114

1115 1116
	rt_mutex_adjust_prio_chain(owner, RT_MUTEX_MIN_CHAINWALK, lock,
				   next_lock, NULL, current);
1117

1118
	raw_spin_lock_irq(&lock->wait_lock);
1119 1120
}

1121 1122 1123 1124 1125 1126 1127 1128
/*
 * Recheck the pi chain, in case we got a priority setting
 *
 * Called from sched_setscheduler
 */
void rt_mutex_adjust_pi(struct task_struct *task)
{
	struct rt_mutex_waiter *waiter;
1129
	struct rt_mutex *next_lock;
1130 1131
	unsigned long flags;

1132
	raw_spin_lock_irqsave(&task->pi_lock, flags);
1133 1134

	waiter = task->pi_blocked_on;
1135
	if (!waiter || rt_mutex_waiter_equal(waiter, task_to_waiter(task))) {
1136
		raw_spin_unlock_irqrestore(&task->pi_lock, flags);
1137 1138
		return;
	}
1139
	next_lock = waiter->lock;
1140
	raw_spin_unlock_irqrestore(&task->pi_lock, flags);
1141

1142 1143
	/* gets dropped in rt_mutex_adjust_prio_chain()! */
	get_task_struct(task);
1144

1145 1146
	rt_mutex_adjust_prio_chain(task, RT_MUTEX_MIN_CHAINWALK, NULL,
				   next_lock, NULL, task);
1147 1148
}

1149 1150 1151 1152 1153 1154 1155 1156
void rt_mutex_init_waiter(struct rt_mutex_waiter *waiter)
{
	debug_rt_mutex_init_waiter(waiter);
	RB_CLEAR_NODE(&waiter->pi_tree_entry);
	RB_CLEAR_NODE(&waiter->tree_entry);
	waiter->task = NULL;
}

1157 1158 1159 1160
/**
 * __rt_mutex_slowlock() - Perform the wait-wake-try-to-take loop
 * @lock:		 the rt_mutex to take
 * @state:		 the state the task should block in (TASK_INTERRUPTIBLE
1161
 *			 or TASK_UNINTERRUPTIBLE)
1162 1163 1164
 * @timeout:		 the pre-initialized and started timer, or NULL for none
 * @waiter:		 the pre-initialized rt_mutex_waiter
 *
1165
 * Must be called with lock->wait_lock held and interrupts disabled
1166 1167
 */
static int __sched
1168 1169
__rt_mutex_slowlock(struct rt_mutex *lock, int state,
		    struct hrtimer_sleeper *timeout,
1170
		    struct rt_mutex_waiter *waiter)
1171 1172 1173 1174 1175
{
	int ret = 0;

	for (;;) {
		/* Try to acquire the lock: */
1176
		if (try_to_take_rt_mutex(lock, current, waiter))
1177 1178 1179 1180 1181 1182
			break;

		/*
		 * TASK_INTERRUPTIBLE checks for signals and
		 * timeout. Ignored otherwise.
		 */
1183
		if (likely(state == TASK_INTERRUPTIBLE)) {
1184 1185 1186 1187 1188 1189 1190 1191 1192
			/* Signal pending? */
			if (signal_pending(current))
				ret = -EINTR;
			if (timeout && !timeout->task)
				ret = -ETIMEDOUT;
			if (ret)
				break;
		}

1193
		raw_spin_unlock_irq(&lock->wait_lock);
1194

1195
		debug_rt_mutex_print_deadlock(waiter);
1196

1197
		schedule();
1198

1199
		raw_spin_lock_irq(&lock->wait_lock);
1200 1201 1202
		set_current_state(state);
	}

1203
	__set_current_state(TASK_RUNNING);
1204 1205 1206
	return ret;
}

1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
static void rt_mutex_handle_deadlock(int res, int detect_deadlock,
				     struct rt_mutex_waiter *w)
{
	/*
	 * If the result is not -EDEADLOCK or the caller requested
	 * deadlock detection, nothing to do here.
	 */
	if (res != -EDEADLOCK || detect_deadlock)
		return;

	/*
	 * Yell lowdly and stop the task right here.
	 */
	rt_mutex_print_deadlock(w);
	while (1) {
		set_current_state(TASK_INTERRUPTIBLE);
		schedule();
	}
}

1227 1228 1229 1230 1231 1232
/*
 * Slow path lock function:
 */
static int __sched
rt_mutex_slowlock(struct rt_mutex *lock, int state,
		  struct hrtimer_sleeper *timeout,
1233
		  enum rtmutex_chainwalk chwalk)
1234 1235
{
	struct rt_mutex_waiter waiter;
1236
	unsigned long flags;
1237 1238
	int ret = 0;