Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
What's new
4
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Switch to GitLab Next
Sign in / Register
Toggle navigation
M
modgalrep
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Locked Files
Issues
0
Issues
0
List
Boards
Labels
Service Desk
Milestones
Iterations
Merge Requests
0
Merge Requests
0
Requirements
Requirements
List
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Test Cases
Security & Compliance
Security & Compliance
Dependency List
License Compliance
Operations
Operations
Incidents
Environments
Packages & Registries
Packages & Registries
Container Registry
Analytics
Analytics
CI / CD
Code Review
Insights
Issue
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Peter Bruin
modgalrep
Commits
e42ae080
Commit
e42ae080
authored
Feb 18, 2019
by
Peter Bruin
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
remove obsolete GP functions
parent
d2a3cc6c
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
0 additions
and
291 deletions
+0
-291
functions.gp
functions.gp
+0
-291
No files found.
functions.gp
View file @
e42ae080
...
...
@@ -77,37 +77,6 @@ scalar_multiplication_subgroup_traces(V, H) =
scalar_multiplication_traces(V) = apply(vecsum, values_by_scalar_multiplication_orbit(V));
projective_polynomial(p) =
{
V = readvec(filename("values", p))[1];
liftall(roots_to_pol(scalar_multiplication_traces(V), 't));
}
projectivisation(p) =
{
V = readvec(filename("values", p))[1];
x = varhigher("x", variable(V));
l = matsize(V)[1];
T = scalar_multiplication_traces(V);
W = matrix(l, l, i, j,
if(j == 1, if(i == 1, 0, T[l + 1]),
T[(i - 1)/(j - 1) % l + 1]));
liftall(polinterpolate(concat(Vec(V))[2..l^2],
concat(Vec(W))[2..l^2], x));
}
relative_polynomial(p) =
{
[g, a] = readvec("projective_polynomial_reduced.gp");
V = readvec(filename("values", p))[1];
x = variable(V);
z = varhigher("z", x);
y = varhigher("y", z);
T = scalar_multiplication_traces(V);
R = [roots_to_pol(v, z) | v <- values_by_scalar_multiplication_orbit(V)];
liftall(subst(polinterpolate(T, R, y), y, a));
}
/* Compute a maximal chain of subgroups of G. */
subgroup_chain_maximal(G) =
{
...
...
@@ -213,43 +182,6 @@ reduced_bases() =
vector(#c, j, red_basis(n, [nfinit(variable(f[j])), K[j]], [c[j], alpha[j]]));
}
addition(p) =
{
V = readvec(filename("values", p))[1];
x = variable(V);
z = varhigher("z", x);
y = varhigher("y", z);
l = matsize(V)[1];
A = matrix(l, l, i0, j0,
W = matrix(l, l, i, j,
V[(i + i0 - 2) % l + 1, (j + j0 - 2) %l + 1]);
polinterpolate(concat(Vec(V)), concat(Vec(W)), z));
liftall(polinterpolate(concat(Vec(V)), concat(Vec(A)), y));
}
scalar_multiplication(p, r) =
{
V = readvec(filename("values", p))[1];
z = varhigher("z", variable(V));
l = matsize(V)[1];
Vr = matrix(l, l, i, j,
V[(i - 1)*r % l + 1, (j - 1)*r % l + 1]);
liftall(polinterpolate(concat(Vec(V)), concat(Vec(Vr)), z));
}
scalar_multiplication_relative(p, r) =
{
[g, a] = readvec("projective_polynomial_reduced.gp");
V = readvec(filename("values", p))[1];
z = varhigher("z", variable(V));
y = varhigher("y", z);
l = matsize(V)[1];
W = values_by_scalar_multiplication_orbit(V);
F = [polinterpolate(v, vector(l - 1, i, v[i*r % l]), z) | v <- W];
T = scalar_multiplication_traces(V);
liftall(subst(polinterpolate(T, F, y), y, a));
}
pairing(p) =
{
my(V = readvec(filename("values", p)),
...
...
@@ -310,26 +242,6 @@ suitable_primes() =
return(vecextract(P, ind));
}
/*
Return the list of suitable primes p for which in addition
the polynomial modulo p is square-free.
*/
suitable_primes_poly() =
{
[p | p <- readvec("suitable_primes.gp"),
issquarefree(Mod(readvec(filename("poly", p))[1], p))];
}
/*
Return the list of suitable primes p for which in addition
the projective polynomial modulo p is square-free.
*/
suitable_primes_ppoly() =
{
[p | p <- readvec("suitable_primes.gp"),
issquarefree(Mod(read(filename("ppoly", p)), p))];
}
/*
Return the list of suitable primes p for which in addition
both k-th intermediate polynomials modulo p are square-free.
...
...
@@ -350,18 +262,6 @@ suitable_primes_ipoly(k) =
| i <- [1..#f]]))];
}
/*
Return the primes p in suitable_primes_ppoly for which in addition
the change of variables to the reduced projective polynomial has no
p in the denominator.
*/
suitable_primes_rpoly() =
{
v = Vec(lift(readvec("projective_polynomial_reduced.gp")[2]));
[p | p <- readvec("suitable_primes_ppoly.gp"),
iferr(v % p; 1, e, 0)];
}
/*
Return the primes p in suitable_primes_ipoly(k) for which in addition
the changes of variables to both k-th intermediate polynomials have no
...
...
@@ -420,58 +320,6 @@ polheight(f) =
log(max(abs(numerator(f)), denominator(f))));
}
height_polynomial() = polheight(read("polynomial.gp"));
height_projective_polynomial() = polheight(read("projective_polynomial.gp"));
height_relative_polynomial() = polheight(read("relative_polynomial.gp"));
height_addition() = polheight(read("addition.gp"));
height_scalar_mul() = polheight(read("scalar_mul.gp"));
info() =
{
rnfeq = read("relative_equation.gp");
K = read("projective_field.gp");
polabs = rnfeq[1];
pol = rnfeq[5];
r1 = polsturm(polabs);
r2 = (poldegree(polabs) - r1) / 2;
print("[K:Q] = ", poldegree(K.pol));
print("[L:K] = ", poldegree(pol));
print("disc(Z_K/Z) = ", K.disc);
iferr(L = read("relative_field.gp");
D_abs = (-1)^r2 * abs(K.disc)^poldegree(pol) * idealnorm(K, L.disc[1]);
print("disc(Z_L/Z_K) = ", L.disc[1]);
print("factorisation of |disc(Z_L/Z)| = ", factor(D_abs)),
err,
/* do nothing */);
print("sign(projective field) = ", K.sign);
print("sign(absolute field) = ", [r1, r2]);
print("projective polynomial = ", K.pol);
print("relative polynomial = ", pol);
print("absolute polynomial = ", polabs);
print("h(projective_polynomial) = ", polheight(read("projective_polynomial.gp")));
print("h(relative_polynomial) = ", polheight(lift(read("relative_polynomial.gp"))));
print("h(projective_polynomial_reduced) = ", polheight(K.pol));
print("h(relative_polynomial_reduced) = ", polheight(pol));
print("h(absolute_polynomial) = ", polheight(polabs));
iferr(F = readvec("absolute_polynomial_reduced.gp")[1];
print("h(absolute_polynomial_reduced) = ", polheight(F)),
err,
/* do nothing */);
iferr(print("h(pairing) = ", matheight(read("pairing.gp"))),
err,
/* do nothing */);
iferr(print("h(addition) = ", polheight(read("addition.gp"))),
err,
/* do nothing */);
print("h(scalar_mul_rel) = ", polheight(liftall(read("scalar_mul_rel.gp"))));
print("h(scalar_mul_rel_reduced) = ", polheight(liftall(read("scalar_mul_rel_reduced.gp"))));
print("h(scalar_mul_absolute) = ", polheight(lift(read("scalar_mul_absolute.gp"))));
}
summary() =
{
my(D = readvec("reduced_dual_pair.gp"),
...
...
@@ -535,20 +383,6 @@ chinese_from_files(prefix, P) =
Mod(x, N);
}
/*
Reconstruct a polynomial P whose splitting field is
the field of definition of the Galois representation.
*/
reconstruct_polynomial() =
{
my(P = readvec("suitable_primes.gp"),
Fp = [Mod(readvec(filename("poly", p))[1], p) | p <- P],
F = bestappr_shift(chinese(Fp)));
if(F == [],
error("cannot reconstruct polynomial"));
F;
}
reconstruct_polynomials() =
{
my(P = readvec("suitable_primes.gp"),
...
...
@@ -559,26 +393,6 @@ reconstruct_polynomials() =
f;
}
reconstruct_projective_polynomial() =
{
P = readvec("suitable_primes.gp");
Fp = [Mod(read(filename("ppoly", p)), p) | p <- P];
F = bestappr_shift(chinese(Fp));
if(F == [],
error("cannot reconstruct projective polynomial"));
F;
}
reconstruct_relative_polynomial() =
{
P = readvec("suitable_primes_rpoly.gp");
Gp = [Mod(read(filename("rpoly", p)), p) | p <- P];
G = bestappr(chinese(Gp));
if(G == [],
error("cannot reconstruct relative polynomial"));
Mod(G, readvec("projective_polynomial_reduced.gp")[1]);
}
reconstruct_intermediate_polynomials(k) =
{
if(k == 0,
...
...
@@ -619,57 +433,6 @@ reconstruct_origins() =
L;
}
reconstruct_addition() =
{
P = readvec("suitable_primes_poly.gp");
L = [Mod(read(filename("addition", p)), p) | p <- P];
alpha0 = chinese(L);
alpha = bestappr(alpha0);
if(alpha == [],
error("cannot reconstruct addition"));
f = read("polynomial.gp");
x = variable(f);
[y, z] = variables(alpha);
if(substvec(alpha, [y, z], [z, y]) != alpha,
error("addition is not commutative"));
\\ The check below is very slow for l >= 7.
if(subst(f, x, Mod(Mod(alpha, subst(f, x, y)), subst(f, x, z))) != 0,
error("alpha does not operate on the roots of f"));
alpha;
}
reconstruct_scalar_mul() =
{
P = readvec("suitable_primes_poly.gp");
L = [Mod(read(filename("scalar_mul", p)), p) | p <- P];
mu0 = chinese(L);
mu = bestappr_shift(mu0);
if(mu == [],
error("cannot reconstruct scalar multiplication"));
f = read("polynomial.gp");
x = variable(f);
z = variable(mu);
if(subst(f, x, Mod(mu, subst(f, x, z))) != 0,
error("mu does not operate on the roots of f"));
mu;
}
reconstruct_projectivisation() =
{
P = readvec("suitable_primes_poly.gp");
L = [Mod(read(filename("projectivisation", p)), p) | p <- P];
iota0 = chinese(L);
iota = bestappr_shift(iota0);
if(iota == [],
error("cannot reconstruct projectivisation"));
iota = Mod(iota, read("polynomial_star.gp"));
g = read("projective_polynomial.gp");
t = variable(g);
if(subst(g, t, iota) != 0,
error("projectivisation inconsistent"));
iota;
}
reconstruct_pairing() =
{
my(P = readvec("suitable_primes_dual.gp"),
...
...
@@ -700,17 +463,6 @@ reduced_dual_pair() =
[variable(K[2]), K[2].pol], [Mat(1), K[2][8]], T]);
}
projectivisation_to_reduced() =
{
iota = read("projectivisation.gp");
[g, a] = readvec("projective_polynomial_reduced.gp");
t = variable(g);
kappa = subst(lift(modreverse(a)), t, iota);
if(subst(g, t, kappa) != 0,
error("projectivisation_to_reduced inconsistent"));
kappa;
}
relative_polynomial_reduced() =
{
G = read("relative_polynomial.gp");
...
...
@@ -781,46 +533,3 @@ intermediate_fields(k) =
F = if(#F == 3, [F[1]], [F[1], F[4]]);
[nfinit([f, P]) | f <- F];
}
reconstruct_scalar_mul_rel() =
{
f = read("relative_polynomial.gp");
g = readvec("projective_polynomial_reduced.gp")[1];
P = readvec("suitable_primes_strict.gp");
L = [Mod(read(filename("scalar_mul_rel", p)), p) | p <- P];
mu0 = chinese(L);
mu = bestappr(mu0);
if(mu == [],
error("cannot reconstruct scalar multiplication"));
mu = Mod(Mod(mu, g), f);
z = variable(f);
if(subst(f, z, mu) != 0,
error("mu does not operate on the roots of f"));
mu;
}
scalar_mul_rel_reduced() =
{
[f, a] = readvec("relative_polynomial_reduced.gp");
[z, t] = variables(f);
mu = read("scalar_mul_rel.gp");
mu = Mod(subst(lift(modreverse(a)), z, subst(lift(mu), z, a)), f);
if(subst(f, z, mu) != 0,
error("mu does not operate on the roots of f"));
mu;
}
scalar_mul_absolute() =
{
rnfeq = read("relative_equation.gp");
f = rnfeq[1];
mu = read("scalar_mul_rel_reduced.gp");
\\ K = \Q(alpha), L = K(beta),
\\ L = \Q(beta + k alpha)
\\ mu(beta + k alpha) = mu(beta) + k alpha
mu = Mod(eltreltoabs(rnfeq, liftpol(mu)) + rnfeq[3] * rnfeq[2], f);
z = variable(f);
if(subst(f, z, mu) != 0,
error("mu does not operate on the roots of f"));
mu;
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment