Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
What's new
6
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Switch to GitLab Next
Sign in / Register
Toggle navigation
M
modgalrep
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Locked Files
Issues
0
Issues
0
List
Boards
Labels
Service Desk
Milestones
Iterations
Merge Requests
0
Merge Requests
0
Requirements
Requirements
List
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Test Cases
Security & Compliance
Security & Compliance
Dependency List
License Compliance
Operations
Operations
Incidents
Environments
Packages & Registries
Packages & Registries
Container Registry
Analytics
Analytics
CI / CD
Code Review
Insights
Issue
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Peter Bruin
modgalrep
Commits
3d3d2221
Commit
3d3d2221
authored
Feb 15, 2019
by
Peter Bruin
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
find a basis for the dual subspace at the same time
parent
859be607
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
70 additions
and
62 deletions
+70
-62
modcurve/torsion-subscheme.c
modcurve/torsion-subscheme.c
+70
-62
No files found.
modcurve/torsion-subscheme.c
View file @
3d3d2221
...
...
@@ -160,64 +160,68 @@ multiples(GEN J, GEN P, long l) {
return
mult
;
}
static
GEN
random_representation_space_point
(
GEN
J
,
unsigned
long
l
,
GEN
projector
,
int
tries
)
{
GEN
P
;
pari_sp
av
=
avma
;
while
(
tries
--
>
0
)
{
avma
=
av
;
P
=
random_torsion_point
(
J
,
l
);
err_printf
(
"applying Frobenius polynomial %Ps
\n
"
,
projector
);
P
=
jacobian_Frob_polynomial
(
J
,
P
,
centerlift
(
projector
),
1
);
if
(
!
jacobian_is_zero
(
J
,
P
))
return
gerepileupto
(
av
,
P
);
/* assume P, Q != 0 */
static
int
is_multiple
(
GEN
J
,
GEN
P
,
GEN
Q
,
long
l
)
{
long
i
;
GEN
iP
;
for
(
i
=
1
;
i
<
l
;
i
++
)
{
iP
=
(
i
==
1
)
?
P
:
jacobian_add
(
J
,
iP
,
P
);
if
(
jacobian_equal
(
J
,
Q
,
iP
))
{
err_printf
(
"Q = %li*P
\n
"
,
i
-
1
);
return
1
;
}
}
if
(
GIVEUP
)
pari_err
(
e_MISC
,
"too many tries to find a random point"
);
return
NULL
;
return
0
;
}
/* Naïve algorithm for finding a basis of the l-torsion. */
/*
Naïve algorithm for finding bases of the subspaces of the
l-torsion defined by the elements of proj.
*/
static
GEN
find_bas
is
(
GEN
J
,
unsigned
long
l
,
GEN
projector
,
int
tries
)
{
GEN
P
,
Q
,
multiples_P
;
long
i
;
find_bas
es
(
GEN
J
,
unsigned
long
l
,
GEN
proj
,
int
tries
)
{
GEN
bases
,
P
,
Q
,
R
;
long
i
,
j
,
n
=
lg
(
proj
)
-
1
,
found
=
0
;
pari_sp
av
=
avma
;
int
tries0
=
tries
;
/* Find a point P in the representation space. */
P
=
random_representation_space_point
(
J
,
l
,
projector
,
tries0
);
if
(
P
==
NULL
)
return
NULL
;
/* Create the vector [0, P, 2*P, ..., (l - 1)*P]. */
multiples_P
=
cgetg
(
l
+
1
,
t_VEC
);
gel
(
multiples_P
,
1
)
=
jacobian_zero
(
J
);
for
(
i
=
1
;
i
<=
l
-
1
;
i
++
)
gel
(
multiples_P
,
i
+
1
)
=
jacobian_add
(
J
,
gel
(
multiples_P
,
i
),
P
);
err_printf
(
"looking for a linearly independent point
\n
"
);
Q
=
jacobian_Frob
(
J
,
P
,
1
);
while
(
tries
--
>
0
)
{
int
Q_multiple_of_P
=
0
;
for
(
i
=
1
;
i
<=
l
;
i
++
)
{
if
(
jacobian_equal
(
J
,
Q
,
gel
(
multiples_P
,
i
)))
{
err_printf
(
"Q = %li*P
\n
"
,
i
-
1
);
Q_multiple_of_P
=
1
;
break
;
bases
=
cgetg
(
n
+
1
,
t_VEC
);
for
(
i
=
1
;
i
<=
n
;
i
++
)
gel
(
bases
,
i
)
=
cgetg
(
1
,
t_VEC
);
while
(
tries
--
>
0
&&
found
<
2
*
n
)
{
P
=
random_torsion_point
(
J
,
l
);
for
(
i
=
1
;
i
<=
n
;
i
++
)
{
j
=
lg
(
gel
(
bases
,
i
))
-
1
;
if
(
j
==
2
)
continue
;
err_printf
(
"applying Frobenius polynomial %Ps
\n
"
,
gel
(
proj
,
i
));
Q
=
jacobian_Frob_polynomial
(
J
,
P
,
centerlift
(
gel
(
proj
,
i
)),
1
);
if
(
jacobian_is_zero
(
J
,
Q
))
continue
;
found
++
;
if
(
j
==
0
)
{
R
=
jacobian_Frob
(
J
,
Q
,
1
);
if
(
is_multiple
(
J
,
Q
,
R
,
l
))
gel
(
bases
,
i
)
=
mkvec
(
Q
);
else
{
gel
(
bases
,
i
)
=
mkvec2
(
Q
,
R
);
found
++
;
}
}
else
{
R
=
gmael
(
bases
,
i
,
1
);
if
(
!
is_multiple
(
J
,
R
,
Q
,
l
))
gel
(
bases
,
i
)
=
mkvec2
(
R
,
Q
);
}
}
if
(
!
Q_multiple_of_P
)
return
gerepilecopy
(
av
,
mkvec2
(
P
,
Q
));;
err_printf
(
"generating new torsion point
\n
"
);
Q
=
random_representation_space_point
(
J
,
l
,
projector
,
tries0
);
if
(
Q
==
NULL
)
break
;
if
(
gc_needed
(
av
,
1
))
bases
=
gerepileupto
(
av
,
bases
);
}
if
(
found
<
2
*
n
)
{
if
(
GIVEUP
)
pari_err
(
e_MISC
,
"too many tries to find bases"
);
return
NULL
;
}
if
(
GIVEUP
)
pari_err
(
e_MISC
,
"too many tries to find a linearly independent point"
);
return
NULL
;
return
gerepilecopy
(
av
,
bases
);
}
static
GEN
...
...
@@ -304,14 +308,15 @@ values_from_basis(GEN J, GEN P, GEN Q, long l, GEN multiples_O) {
}
/*
Return a pair [V, W], where V is the matrix of all
function values and W is the total weight.
Return either [V, W, Z] or [V, W, V_dual, W_dual, Z], where
V is the matrix of all function values, W is the total
weight, similarly for V_dual and W_dual, and Z encodes
the Weil pairing on V (resp. between V and V_dual).
*/
static
GEN
all_function_values
(
GEN
J
,
unsigned
long
l
,
GEN
projector
,
GEN
projector_dual
,
int
tries
)
{
all_function_values
(
GEN
J
,
unsigned
long
l
,
GEN
proj
,
int
tries
)
{
pari_sp
av
=
avma
;
GEN
basis
,
basis_dual
,
values
,
values_dual
;
GEN
bas
es
,
bas
is
,
basis_dual
,
values
,
values_dual
;
GEN
O
,
multiples_O
,
P
,
Q
,
P_dual
,
Q_dual
,
z
,
Z
;
err_printf
(
"computing multiples of the distinguished point
\n
"
);
...
...
@@ -319,19 +324,18 @@ all_function_values(GEN J, unsigned long l, GEN projector,
multiples_O
=
curve_point_multiples
(
J
,
O
);
err_printf
(
"computing bases for the desired subspaces of the %li-torsion
\n
"
,
l
);
bas
is
=
find_basis
(
J
,
l
,
projector
,
tries
);
if
(
!
basis
)
{
bas
es
=
find_bases
(
J
,
l
,
proj
,
tries
);
if
(
bases
==
NULL
)
{
basis
=
jacobian_l_torsion_basis
(
J
,
l
,
multiples_O
);
/* TODO: project */
}
/* TODO: find the dual subspace at the same time */
basis
=
gel
(
bases
,
1
);
P
=
gel
(
basis
,
1
);
Q
=
gel
(
basis
,
2
);
values
=
values_from_basis
(
J
,
P
,
Q
,
l
,
multiples_O
);
if
(
gequal
(
projector
,
projector_dual
))
{
basis_dual
=
basis
;
if
(
lg
(
proj
)
==
2
)
{
err_printf
(
"computing Weil pairing
\n
"
);
z
=
jacobian_weil_pairing
(
J
,
P
,
Q
,
l
);
if
(
gequal1
(
z
)
||
!
gequal1
(
gpowgs
(
z
,
l
)))
...
...
@@ -339,7 +343,7 @@ all_function_values(GEN J, unsigned long l, GEN projector,
return
gerepilecopy
(
av
,
shallowconcat
(
values
,
mkvec
(
z
)));
}
else
{
basis_dual
=
find_basis
(
J
,
l
,
projector_dual
,
tries
);
basis_dual
=
gel
(
bases
,
2
);
P_dual
=
gel
(
basis_dual
,
1
);
Q_dual
=
gel
(
basis_dual
,
2
);
values_dual
=
values_from_basis
(
J
,
P_dual
,
Q_dual
,
l
,
multiples_O
);
...
...
@@ -363,7 +367,7 @@ all_function_values(GEN J, unsigned long l, GEN projector,
GEN
torsion_subscheme
(
GEN
Gamma
,
unsigned
long
l
,
unsigned
long
p
,
GEN
f
,
unsigned
long
max_degree
,
unsigned
long
tries
)
{
GEN
projector
,
projector_dual
;
GEN
projector
,
projector_dual
,
proj
;
GEN
extension
,
J
,
J_k
,
order_J
,
values
;
long
v
;
pari_sp
av
=
avma
;
...
...
@@ -387,6 +391,10 @@ torsion_subscheme(GEN Gamma, unsigned long l, unsigned long p,
pari_printf
(
"Jacobian has order %Pi = %li^%li * %Pi
\n
"
,
order_J
,
l
,
v
,
gdiv
(
order_J
,
powuu
(
l
,
v
)));
values
=
all_function_values
(
J_k
,
l
,
projector
,
projector_dual
,
tries
);
if
(
RgX_equal
(
projector
,
projector_dual
))
proj
=
mkvec
(
projector
);
else
proj
=
mkvec2
(
projector
,
projector_dual
);
values
=
all_function_values
(
J_k
,
l
,
proj
,
tries
);
return
gerepileupto
(
av
,
values
);
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment