Commit 7ef36c2e authored by Achilleas Pipinellis's avatar Achilleas Pipinellis 🐸

Merge branch 'master' into 'master'

added more documentation to math-sample

See merge request !62
parents 81f4d5db ef92f248
Pipeline #62895567 passed with stages
in 30 seconds
......@@ -5,12 +5,18 @@ date: 2017-03-05
tags: ["example", "math"]
---
KaTeX can be used to generate complex math formulas server-side.
KaTeX can be used to generate complex math formulas. It supports in-line math using the `\\( ... \\)` delimiters, like this: \\( E = mc^2 \\). By default, it does *not* support in-line delimiters `$...$` because those occur too commonly in typical webpages. It supports displayed math using the `$$` or `\\[...\\]` delimiters, like this:
Formula 1:
$$
\phi = \frac{(1+\sqrt{5})}{2} = 1.6180339887\cdots
$$
Formula 2: (same formula, different delimiter)
\\[
\phi = \frac{(1+\sqrt{5})}{2} = 1.6180339887\cdots
\\]
Additional details can be found on [GitHub](https://github.com/Khan/KaTeX) or on the [Wiki](http://tiddlywiki.com/plugins/tiddlywiki/katex/).
<!--more-->
......@@ -33,10 +39,10 @@ $$
\frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} = 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\cdots} } } }
$$
```
​​$$
$$
\frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} = 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\cdots} } } }
$$
​​
### Example 3
```
......@@ -47,3 +53,19 @@ $$
$$
1 + \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots = \prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})}, \quad\quad \text{for }\lvert q\rvert<1.
$$
### Example 4
Remember, certain characters are rendered by markdown, so you may need to workaround those issues. You can find the complete list of KaTeX supported functions here: [https://khan.github.io/KaTeX/docs/supported.html](https://khan.github.io/KaTeX/docs/supported.html)
For example, the `'` character can be replaced with `^\prime`:
$$
G^\prime = G - u
$$
The `"` character can be replaced with `^{\prime\prime}`:
$$
G^{\prime\prime} = G^\prime - v
$$
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment