Skip to content

GitLab

  • Projects
  • Groups
  • Snippets
  • Help
    • Loading...
  • Help
    • Help
    • Support
    • Community forum
    • Submit feedback
    • Contribute to GitLab
    • Switch to GitLab Next
  • Sign in / Register
N
nfiesta_pg
  • Project overview
    • Project overview
    • Details
    • Activity
    • Releases
  • Repository
    • Repository
    • Files
    • Commits
    • Branches
    • Tags
    • Contributors
    • Graph
    • Compare
    • Locked Files
  • Issues 6
    • Issues 6
    • List
    • Boards
    • Labels
    • Service Desk
    • Milestones
    • Iterations
  • Merge Requests 3
    • Merge Requests 3
  • Requirements
    • Requirements
    • List
  • CI / CD
    • CI / CD
    • Pipelines
    • Jobs
    • Schedules
    • Test Cases
  • Operations
    • Operations
    • Incidents
    • Environments
  • Packages & Registries
    • Packages & Registries
    • Container Registry
  • Analytics
    • Analytics
    • CI / CD
    • Code Review
    • Insights
    • Issue
    • Repository
    • Value Stream
  • Wiki
    • Wiki
  • Members
    • Members
  • Activity
  • Graph
  • Create a new issue
  • Jobs
  • Commits
  • Issue Boards
Collapse sidebar
  • nFIESTA
  • nfiesta_pg
  • Wiki
  • Minimal Working Example

Last edited by Jiří Fejfar May 28, 2020
Page history

Minimal Working Example

Table of content:

  • Introduction
    • Issues & error reporting
  • Installation of nFIESTA
    • Automated tests checking installation
  • Data used in Minimal Working Example
    • Sampling design
      • Strata and NFI plots (grids)
      • Panels
    • Local densities
      • Target local densities
      • Auxiliary local densities
    • Estimation cells and parametrization areas
    • Automated tests importing data
  • Configuration of estimates
    • Estimation cell and target variable
    • Single-phase configuration
    • Regression estimates configuration
      • Model configuration
    • Automated tests creating and showing configurations
    • Automated tests selecting data for calculation
  • Calculation of estimates
    • Single-phase estimates calculation
    • Computation of G_beta
    • Regression estimates calculation
    • Automated tests performing calculations of estimates

Introduction

This part of documentation describes the Minimal Working Example showing how forest inventory estimates can be produced by the nFIESTA system. Estimates of Forest area according to FAO's definition based on NFI data from Czech NFI2 (2011 - 2014 / 2015) are demonstrated in this example. Single phase and regression estimate of total is calculated together with its variability. Internally derived map of forest (OLIL version 2013) is used as a auxiliary data.

It is highly advisable to go through document Functional overview of nFIESTA and following Data storage, Estimates configuration and Estimates calculation before going through Minimal Working Example to get conceptual overview of the whole system. Alternatively, that part can be found also in Appendix B of technical report.

Following three chapters shows procedure how to get single estimate (total of forest area) using nFIESTA system from the very beginning:

  • Installation of nFIESTA,
  • Data used in Minimal Working Example,
  • Configuration of estimates,
  • Calculation of estimates.

The Minimal Working Example is tightly connected to automated tests (in PostgreSQL terminology called regression tests) designed to alert when nFIESTA system starts to behave differently unintentionally (regression testing in computing terminology). Because in Statistics word regression has different meaning (regression estimator implemented in nFIESTA) we will call nFIESTA regression test automated tests later in documentation. Automated tests can be seen as a kind of 'live documentation'. They are triggered each time the nFIESTA source code is changed. Results calculated in automated tests (using nFIESTA) were verified by independent implementation of estimators in R. At the end of each chapter you will find links to corresponding automated tests.

It is recommended to check the contrib_regression database (created by automated tests and containing automated test data) using e.g. QGIS. In particular to connect to the DB, look at the database objects (tables, views, functions) and to visualise test data (geometries).

Issues & error reporting

In case of troubles, please see a list of issues with label MinimalWorkingExample. If your are facing new issue, please do not hesitate to create new one.

Installation of nFIESTA

For installation instruction see Installation page.

Automated tests checking installation

  • install_test

Data used in Minimal Working Example

For conceptual details see page Data storage especially ERD diagram.

Sampling design

Strata and NFI plots (grids)

Data used in automated tests covers eastern part of Czech Republic. Area can be split into 5 strata (so called 'Natural Forest Regions Districts' – NFRD – in Czech OPLO) which are aggregated into 2 strata sets. For this experiment, you can imagine strata set as independent country with its own design of sampling grid:

  • Czechia-Moravia border (NFRD 7 and 12) with sampling grid from Czech NFI1 (clusters) with degraded coordinates of plot positions
  • Moravian and Silesian region (NFRD 13, 11 and 14) with sampling grid from Czech NFI2 with degraded coordinates of plot positions.

Moreover strata inside strata sets can differ in density of the grid: NFRD 14 has lower density compared to 11 and 13. See overview map for graphical representation.

Sample of Czech NFI data.
Overview of data used in tests.

You can see strata with their attributes in following table:

Click here to see SQL.
select
	t_stratum.id, stratum, area_m2, buffered_area_m2,
	t_strata_set.country, t_strata_set.strata_set, t_strata_set.comment
from
nfiesta_test.t_stratum
inner join nfiesta_test.t_strata_set on (t_stratum.strata_set = t_strata_set.id)
order by strata_set, stratum;
id stratum area_m2 buffered_area_m2 country strata_set comment
3 NFRD12 8025410073.69441 8279634668.709105 1 CM border Region of the border between Czechia and Moravia.
1 NFRD7 7822509994.809708 8076100362.160962 1 CM border Region of the border between Czechia and Moravia.
2 NFRD11 5762510887.656536 1 MS Region of Silesia and central-East part of Moravia.
4 NFRD13 4851632964.947233 1 MS Region of Silesia and central-East part of Moravia.
5 NFRD14 7273947545.745548 1 MS Region of Silesia and central-East part of Moravia.

Panels

List of panels and its connection to reference year sets can be seen in following table.

Click here to see SQL.
select
	t_panel.stratum as t_panel__stratum, t_panel.panel as t_panel__panel,
	t_reference_year_set.label as t_reference_year_set__label
from nfiesta_test.t_panel
inner join nfiesta_test.cm_refyearset2panel_mapping on (t_panel.id = cm_refyearset2panel_mapping.panel)
inner join nfiesta_test.t_reference_year_set on (cm_refyearset2panel_mapping.reference_year_set = t_reference_year_set.id)
order by stratum, t_panel.panel
;
t_panel__stratum t_panel__panel t_reference_year_set__label
1 NFRD7- 2plots NFI1 (2001-2004)
1 NFRD7- 2plots NFI2 (2011-2014)
2 NFRD11- 1plot, s2a NFI2 (2011-2015)
2 NFRD11- 1plot, s2a NFI3 (2016-2020)
2 NFRD11- 1plot, s2b NFI3 (2016-2020)
3 NFRD12- 2plots NFI1 (2001-2004)
3 NFRD12- 2plots NFI2 (2011-2014)
4 NFRD13- 1plot, s2a NFI2 (2011-2015)
4 NFRD13- 1plot, s2a NFI3 (2016-2020)
4 NFRD13- 1plot, s2b NFI3 (2016-2020)
5 NFRD14- 1plot, s2a NFI3 (2016-2020)
5 NFRD14- 1plot, s2a NFI2 (2011-2015)

Local densities

Target local densities

Click here to see SQL.
with w_distinct_ldsities as (
	select distinct target_variable, sub_population_category, area_domain_category, reference_year_set
	from nfiesta_test.t_target_data
)
select
	--w_distinct_ldsities.target_variable as w_distinct_ldsities__target_variable,
	c_target_variable.description as c_target_variable__description,
	--c_variable_type.description as c_variable_type__description,
	--c_state_or_change.description as c_state_or_change__description,
	--sub_population_category,
	coalesce(c_area_domain_category.description, 'Without distinction') as c_area_domain_category__description,
	t_reference_year_set.label
from
w_distinct_ldsities
inner join nfiesta_test.c_target_variable on (w_distinct_ldsities.target_variable = c_target_variable.id)
inner join nfiesta_test.c_variable_type on (c_target_variable.variable_type = c_variable_type.id)
inner join nfiesta_test.c_state_or_change on (c_target_variable.state_or_change = c_state_or_change.id)
left join nfiesta_test.c_area_domain_category on (w_distinct_ldsities.area_domain_category = c_area_domain_category.id)
left join nfiesta_test.t_reference_year_set on (w_distinct_ldsities.reference_year_set = t_reference_year_set.id)
order by c_target_variable.description, c_area_domain_category.description, t_reference_year_set.label;
c_target_variable__description c_area_domain_category__description label
Area of geographical domain. Without distinction NFI2 (2011-2014)
Area of geographical domain. Without distinction NFI2 (2011-2015)
Forest area according to FAO's definition. Forest in land register. NFI2 (2011-2014)
Forest area according to FAO's definition. Forest in land register. NFI2 (2011-2015)
Forest area according to FAO's definition. Non-forest in land register. NFI2 (2011-2014)
Forest area according to FAO's definition. Non-forest in land register. NFI2 (2011-2015)
Forest area according to FAO's definition. Without distinction NFI2 (2011-2014)
Forest area according to FAO's definition. Without distinction NFI2 (2011-2015)

Particular local densities can be obtained by following query:

Click here to see SQL.
select
	plot,
	c_target_variable.label as target_variable,
	coalesce(c_area_domain_category.label, 'without distiction') as area_domain_category,
	t_reference_year_set.label as reference_year_set,
	value as local_density
from nfiesta_test.t_target_data
inner join nfiesta_test.c_target_variable ON c_target_variable.id = t_target_data.target_variable
left join nfiesta_test.c_area_domain_category ON c_area_domain_category.id = t_target_data.area_domain_category
left join nfiesta_test.t_reference_year_set ON t_reference_year_set.id = t_target_data.reference_year_set
where plot = 1
order by plot, target_variable, area_domain_category, reference_year_set
;
plot target_variable area_domain_category reference_year_set local_density
1 area of gegoraphical domain without distiction NFI2 (2011-2014) 1.0
1 area of gegoraphical domain without distiction NFI2 (2011-2015) 1.0
1 forest area forest NFI2 (2011-2014) 1.0
1 forest area forest NFI2 (2011-2015) 1.0
1 forest area non-forest NFI2 (2011-2014) 0.0
1 forest area non-forest NFI2 (2011-2015) 0.0
1 forest area without distiction NFI2 (2011-2014) 1.0
1 forest area without distiction NFI2 (2011-2015) 1.0

Auxiliary local densities

Click here to see SQL.
with w_distinct_ldsities as (
        select distinct auxiliary_variable_category from nfiesta_test.t_auxiliary_data
)
select
	c_auxiliary_variable_category.description as c_auxiliary_variable_category__description,
	c_auxiliary_variable.description as c_auxiliary_variable__description
from w_distinct_ldsities
inner join nfiesta_test.c_auxiliary_variable_category on (w_distinct_ldsities.auxiliary_variable_category = c_auxiliary_variable_category.id)
inner join nfiesta_test.c_auxiliary_variable on (c_auxiliary_variable_category.auxiliary_variable = c_auxiliary_variable.id);
c_auxiliary_variable_category__description c_auxiliary_variable__description
Forest area coming from OLIL 2013 in hectars. Land use from OLIL 2013.

Particular local densities can be obtained by following query:

Click here to see SQL.
select
	plot,
	c_auxiliary_variable_category.label as auxiliary_variable_category,
	value as local_density
from nfiesta_test.t_auxiliary_data
inner join nfiesta_test.c_auxiliary_variable_category ON c_auxiliary_variable_category.id = t_auxiliary_data.auxiliary_variable_category
where plot = 1
order by plot, auxiliary_variable_category
;
plot auxiliary_variable_category local_density
1 forest 1.0
1 non-forest 0.0

Estimation cells and parametrization areas

Each stratum is also configured to act as estimation cell and parametrization area. This way you can compute estimates for whole stratum or strata set, parametrizing model on such territory. Beside of this, geographically independent system of rectangular cells is defined: 25x25km and 50x50km EEA reference / INSPIRE grid.

Automated tests importing data

  • fst_data
  • fst_conf

Configuration of estimates

For conceptual details see page Estimates configuration.

Estimation cell and target variable

We will limit this documentation to single estimation cell: 25kmE4800N2900. The cell covers three different strata, varying in cluster utilization and density of the grid. See detailed map for graphical representation.

Detail of single configuration: t_total_estimate_conf.id = 400.
Detail of data used in tests: t_total_estimate_conf.id = 400.

We will need ID of estimation cell for configuration:

Click here to see SQL.
select
	f_a_cell.estimation_cell,
	c_estimation_cell.estimation_cell_collection, c_estimation_cell.label
from nfiesta_test.f_a_cell
inner join nfiesta_test.c_estimation_cell on (f_a_cell.estimation_cell = c_estimation_cell.id)
where c_estimation_cell.label = '25kmE4800N2900';
estimation_cell estimation_cell_collection label
81 4 25kmE4800N2900

and we will need to select target variable:

Click here to see SQL.
select
	t_variable.id,
	c_target_variable.label as c_target_variable__label,
	c_sub_population_category.label as c_sub_population_category__label,
	c_area_domain_category.label as c_area_domain_category__label
from nfiesta_test.t_variable
inner join nfiesta_test.c_target_variable on (t_variable.target_variable = c_target_variable.id)
left join nfiesta_test.c_sub_population_category on c_sub_population_category.id = t_variable.sub_population_category
left join nfiesta_test.c_area_domain_category ON c_area_domain_category.id = t_variable.area_domain_category;
id c_target_variable__label c_sub_population_category__label c_area_domain_category__label
1 forest area forest in land register
2 forest area non-forest in land register
3 forest area
4 area of gegoraphical domain

Single-phase configuration

Final step is to call function: fn_1p_est_configuration performing configuration passing id of estimation cell, begin and end dates to be used for estimate, note and id of target variable:

select nfiesta_test.fn_1p_est_configuration(81::integer, '2011-01-01'::date, '2015-12-31'::date, 'note: this is our first estimate'::varchar, 3::integer);

after this step we can see created configuration in view v_conf_overview:

Click here to see SQL.
select *
from nfiesta_test.v_conf_overview
where estimation_cell = 81
	and target_variable = 1
	and area_domain_category is null
	and estimate_type_str = '1p_total'
order by estimate_conf;
estimate_conf total_estimate_conf aux_conf total_estimate_conf__denom aux_conf__denom estimate_type_str sigma force_synthetic param_area param_area_code model model_description estimation_cell estimation_cell_label estimation_cell_collection target_variable target_variable_label sub_population_category sub_population_category_label area_domain_category area_domain_category_label estimate_date_begin estimate_date_end t_panel2total_2ndph_estimate_conf_panels est_data_2ndph_ref_year_sets t_panel2aux_conf_panels
143 143 1p_total 81 25kmE4800N2900 4 1 forest area 2011-01-01 2015-12-31 [2, 5, 8] [2, 3, 3] [None]

It is possible to select and visualize data prepared for calculation by calling function: fn_1p_data

select * from nfiesta_test.fn_1p_data(143);

Regression estimates configuration

We can extend further the example to regression estimate. Here we will need three more parameters:

  • auxiliary configuration
    • parametrization area (we will use 50kmE480N290)
    • model (set of auxiliary variables) & totals of auxiliary variable for each estimation cell
  • whether to use force_synthetic switch (default False)

Model configuration

Model in Minimal Working Example has following structure:

forest = forest_{OLIL} * p_1 + nonforest_{OLIL} * p_2

where forest is prediction, forest_{OLIL} is auxiliary variable indicating plot is inside OLIL, nonforest_{OLIL} is auxiliary variable indicating plot is outside OLIL, p_1 is mean of ground truth inside OLIL and p_2 is mean of ground truth outside OLIL.

We can check, what combinations of parameters are already available for parametrization area:

Click here to see SQL.
select
	t_aux_conf.id as t_aux_conf__id, t_aux_conf.param_area,
	f_a_param_area.param_area_code as f_a_param_area__param_area_code,
	t_model.id as t_model__id,
	c_auxiliary_variable_category.description as c_auxiliary_variable_category__description,
	t_aux_conf.sigma as t_aux_conf__sigma
from nfiesta_test.t_aux_conf
inner join nfiesta_test.f_a_param_area ON f_a_param_area.gid = t_aux_conf.param_area
inner join nfiesta_test.t_model on t_model.id = t_aux_conf.model
inner join nfiesta_test.t_model_variables ON t_model_variables.model = t_model.id
inner join nfiesta_test.t_variable ON t_variable.id = t_model_variables.variable
inner join nfiesta_test.c_auxiliary_variable_category ON c_auxiliary_variable_category.id = t_variable.auxiliary_variable_category
where f_a_param_area.param_area_code = '50kmE480N290';
t_aux_conf__id param_area f_a_param_area__param_area_code t_model__id c_auxiliary_variable_category__description t_aux_conf__sigma
31 31 50kmE480N290 1 Forest area coming from OLIL 2013 in hectars. False

In case we would like to configure different estimate, it is necessary to insert relevant values in tables (see ETL page for examples):

  • c_auxiliary_variable
  • c_auxiliary_variable_category
  • t_aux_total
  • t_variable
  • t_model
  • t_model_variables (set of variables used by model)
  • f_a_param_area
  • t_aux_conf (id to be passed to function bellow)
  • t_panel2aux_conf

and run function fn_2p_est_configuration performing configuration passing id of estimation cell, begin and end dates to be used for estimate, note, id of target variable, id of auxiliary configuration, force synthetic switch:

select nfiesta_test.fn_2p_est_configuration(81::integer, '2011-01-01'::date, '2015-12-31'::date, ''::varchar, 3::integer, 31::integer, false::boolean);

after this we can see configuration in view v_conf_overview:

Click here to see SQL.
select *
from nfiesta_test.v_conf_overview
where estimation_cell = 81
	and target_variable = 1
	and area_domain_category is null
	and param_area = 31
	and force_synthetic = False
	and estimate_type_str = '2p_total'
order by estimate_conf;
estimate_conf total_estimate_conf aux_conf total_estimate_conf__denom aux_conf__denom estimate_type_str sigma force_synthetic param_area param_area_code model model_description estimation_cell estimation_cell_label estimation_cell_collection target_variable target_variable_label sub_population_category sub_population_category_label area_domain_category area_domain_category_label estimate_date_begin estimate_date_end t_panel2total_2ndph_estimate_conf_panels est_data_2ndph_ref_year_sets t_panel2aux_conf_panels
628 400 31 2p_total False False 31 50kmE480N290 1 forest from OLIL 81 25kmE4800N2900 4 1 forest area 2011-01-01 2015-12-31 [2, 5, 8] [2, 3, 3] [2, 5, 8]

It is possible to select and visualize data prepared for calculation by calling function: fn_2p_data:

select * from nfiesta_test.fn_2p_data(400);

Automated tests creating and showing configurations

  • fst_1p_est_conf
  • fst_1p_v_conf_overview
  • fst_2p_est_conf
  • fst_2p_v_conf_overview
  • fst_remove_param_area

Automated tests selecting data for calculation

  • fst_1p_data
  • fst_2p_data

Calculation of estimates

For conceptual details see page Estimates calculation.

Single-phase estimates calculation

Function fn_1p_total_var contains implementation of single-phase estimator. Function argument is id from table t_total_estimate_conf.

select * from nfiesta_test.fn_1p_total_var(143);
attribute point1p var1p point2p var2p est_info
3 6013.938362839113 2162190.2796157715 [{"stratum":3,"attribute":3,"s_units_param_area":19,"s_units_cell":19,"s_units_cell_nonzero":11},{"stratum":4,"attribute":3,"s_units_param_area":106,"s_units_cell":106,"s_units_cell_nonzero":1},{"stratum":5,"attribute":3,"s_units_param_area":27,"s_units_cell":27,"s_units_cell_nonzero":6}]

Function fn_make_estimate_table is more user friendly wrapper printing results. Function argument is id from table t_estimate_conf.

select * from nfiesta_test.fn_make_estimate_table(143);
estimate_conf point var version calc_started calc_duration est_info
143 6013.938362839113 2162190.2796157715 2.2.8 2020-01-23 08:57:38.971937+00 0:00:00 [{"stratum":3,"attribute":3,"s_units_param_area":19,"s_units_cell":19,"s_units_cell_nonzero":11},{"stratum":4,"attribute":3,"s_units_param_area":106,"s_units_cell":106,"s_units_cell_nonzero":1},{"stratum":5,"attribute":3,"s_units_param_area":27,"s_units_cell":27,"s_units_cell_nonzero":6}]

Function fn_make_estimate is more user friendly wrapper saving results into database. Function argument is id from table t_estimate_conf.

select * from nfiesta_test.fn_make_estimate(143);

Computation of G_beta

Coefficients \boldsymbol{\tilde{G}_{\beta_{t+}}}. can be computed using function fn_g_beta as is shown in test fst_2p_gbeta.

Regression estimates calculation

Function fn_2p_total_var contains implementation of regression estimator. Function argument is id from table t_total_estimate_conf.

select * from nfiesta_test.fn_2p_total_var(400);
attribute point1p var1p point2p var2p est_info
3 6013.938362839113 2162190.2796157715 6360.0973539221 156822.28154151756 [{"stratum":3,"attribute":3,"s_units_param_area":205,"s_units_cell":19,"s_units_cell_nonzero":11},{"stratum":4,"attribute":3,"s_units_param_area":218,"s_units_cell":106,"s_units_cell_nonzero":1},{"stratum":5,"attribute":3,"s_units_param_area":198,"s_units_cell":27,"s_units_cell_nonzero":6}]

Function fn_make_estimate_table is more user friendly wrapper printing results. Function argument is id from table t_estimate_conf.

select * from nfiesta_test.fn_make_estimate_table(628);
estimate_conf point var version calc_started calc_duration est_info
628 6360.0973539221 156822.28154151756 2.2.8 2020-01-23 09:30:16.713182+00 0:00:00 [{"stratum":3,"attribute":3,"s_units_param_area":205,"s_units_cell":19,"s_units_cell_nonzero":11},{"stratum":4,"attribute":3,"s_units_param_area":218,"s_units_cell":106,"s_units_cell_nonzero":1},{"stratum":5,"attribute":3,"s_units_param_area":198,"s_units_cell":27,"s_units_cell_nonzero":6}]

Function fn_make_estimate is more user friendly wrapper saving results into database. Function argument is id from table t_estimate_conf.

select * from nfiesta_test.fn_make_estimate(628);

It is also possible to connect computed estimates (here it is single phase total area of forest) with geometries and visualize resulting map.

Click here to see SQL.
select
	row_number() over() as gid,
	v_conf_overview.estimation_cell_label,
	t_result.*,
	f_a_cell.geom::geometry(MultiPolygon, 5221)
from nfiesta_test.t_result
inner join nfiesta_test.v_conf_overview on (t_result.estimate_conf = v_conf_overview.estimate_conf)
inner join nfiesta_test.f_a_cell on (v_conf_overview.estimation_cell = f_a_cell.gid)
where
	v_conf_overview.estimation_cell_label like '25km%'
	and estimate_type_str = '1p_total'
	and target_variable = 1
	and area_domain_category is null;
Click here to see the table.
gid estimation_cell_label id estimate_conf point var calc_started extension_version calc_duration sampling_units geom
1 25kmE4750N2850 115 115 1192.991427702074 393522.34887448314 2020-02-10 12:24:32.041558+00 2.2.10 0:00:00.029514 [{"stratum":3,"attribute":3,"s_units_param_area":7,"s_units_cell":7,"s_units_cell_nonzero":2},{"stratum":4,"attribute":3,"s_units_param_area":28,"s_units_cell":28,"s_units_cell_nonzero":2}] 0106000020651400000100000001030000000100000005000000AA39A169523924C10F3319970B9932C14692CF896A1324C1861253D3453932C1644B8D31D65323C1C576CDF4674C32C128985C9FBD7923C14F2064B72BAC32C1AA39A169523924C10F3319970B9932C1
2 25kmE4750N2875 119 119 17466.736570749075 5780037.553939529 2020-02-10 12:24:32.174458+00 2.2.10 0:00:00.036071 [{"stratum":3,"attribute":3,"s_units_param_area":138,"s_units_cell":138,"s_units_cell_nonzero":57},{"stratum":4,"attribute":3,"s_units_param_area":13,"s_units_cell":13,"s_units_cell_nonzero":0}] 01060000206514000001000000010300000001000000050000004692CF896A1324C1861253D3453932C1945C013979ED23C1EAFB152883D931C15C2670D0E42D23C1D1A2213EA7EC31C1644B8D31D65323C1C576CDF4674C32C14692CF896A1324C1861253D3453932C1
3 25kmE4775N2850 123 123 791.4572536618651 312946.6168464302 2020-02-10 12:24:32.305884+00 2.2.10 0:00:00.028616 [{"stratum":4,"attribute":3,"s_units_param_area":37,"s_units_cell":37,"s_units_cell_nonzero":2}] 010600002065140000010000000103000000010000000500000028985C9FBD7923C14F2064B72BAC32C1644B8D31D65323C1C576CDF4674C32C1A5FDC8FB3F9422C15BE499078D5F32C15FA25E2127BA22C11B4D18B84EBF32C128985C9FBD7923C14F2064B72BAC32C1
4 25kmE4775N2875 127 127 6957.181479192339 2464877.4641527697 2020-02-10 12:24:32.437339+00 2.2.10 0:00:00.036511 [{"stratum":3,"attribute":3,"s_units_param_area":24,"s_units_cell":24,"s_units_cell_nonzero":9},{"stratum":4,"attribute":3,"s_units_param_area":139,"s_units_cell":139,"s_units_cell_nonzero":12}] 0106000020651400000100000001030000000100000005000000644B8D31D65323C1C576CDF4674C32C15C2670D0E42D23C1D1A2213EA7EC31C1F7B9855E4E6E22C15CB9BA57CEFF31C1A5FDC8FB3F9422C15BE499078D5F32C1644B8D31D65323C1C576CDF4674C32C1
5 25kmE4775N2900 131 131 21482.078311151152 7236580.810862159 2020-02-10 12:24:32.586709+00 2.2.10 0:00:00.036628 [{"stratum":3,"attribute":3,"s_units_param_area":139,"s_units_cell":139,"s_units_cell_nonzero":68},{"stratum":4,"attribute":3,"s_units_param_area":21,"s_units_cell":21,"s_units_cell_nonzero":0}] 01060000206514000001000000010300000001000000050000005C2670D0E42D23C1D1A2213EA7EC31C1CFB7D982E90723C1B9F2DF20E98C31C1D123AE4D524822C1F64BFA3412A031C1F7B9855E4E6E22C15CB9BA57CEFF31C15C2670D0E42D23C1D1A2213EA7EC31C1
6 25kmE4800N2850 135 135 2374.3717609855953 935771.7464525611 2020-02-10 12:24:32.71679+00 2.2.10 0:00:00.027675 [{"stratum":4,"attribute":3,"s_units_param_area":27,"s_units_cell":27,"s_units_cell_nonzero":6}] 01060000206514000001000000010300000001000000050000005FA25E2127BA22C11B4D18B84EBF32C1A5FDC8FB3F9422C15BE499078D5F32C1F72794ACA7D421C185F44C2AB57232C1A2CC0FB18EFA21C1DE24D0B674D232C15FA25E2127BA22C11B4D18B84EBF32C1
7 25kmE4800N2875 139 139 8310.301163449583 3234932.246445642 2020-02-10 12:24:32.843047+00 2.2.10 0:00:00.034028 [{"stratum":4,"attribute":3,"s_units_param_area":153,"s_units_cell":153,"s_units_cell_nonzero":21}] 0106000020651400000100000001030000000100000005000000A5FDC8FB3F9422C15BE499078D5F32C1F7B9855E4E6E22C15CB9BA57CEFF31C1495A19AAB5AE21C1693C8394F81232C1F72794ACA7D421C185F44C2AB57232C1A5FDC8FB3F9422C15BE499078D5F32C1
8 25kmE4800N2900 143 143 6013.938362839113 2162190.2796157715 2020-02-10 12:24:32.983202+00 2.2.10 0:00:00.034631 [{"stratum":3,"attribute":3,"s_units_param_area":19,"s_units_cell":19,"s_units_cell_nonzero":11},{"stratum":4,"attribute":3,"s_units_param_area":106,"s_units_cell":106,"s_units_cell_nonzero":1},{"stratum":5,"attribute":3,"s_units_param_area":27,"s_units_cell":27,"s_units_cell_nonzero":6}] 0106000020651400000100000001030000000100000005000000F7B9855E4E6E22C15CB9BA57CEFF31C1D123AE4D524822C1F64BFA3412A031C13C2BD6AAB88821C1DFBF02813EB331C1495A19AAB5AE21C1693C8394F81232C1F7B9855E4E6E22C15CB9BA57CEFF31C1
9 25kmE4800N2925 147 147 40755.718665081105 14316684.332414504 2020-02-10 12:24:33.124451+00 2.2.10 0:00:00.035450 [{"stratum":3,"attribute":3,"s_units_param_area":155,"s_units_cell":155,"s_units_cell_nonzero":117},{"stratum":4,"attribute":3,"s_units_param_area":1,"s_units_cell":1,"s_units_cell_nonzero":0}] 0106000020651400000100000001030000000100000005000000D123AE4D524822C1F64BFA3412A031C170E13BCF4B2222C1209A742A584031C10D12BDB1B06221C1B5D2E379865331C13C2BD6AAB88821C1DFBF02813EB331C1D123AE4D524822C1F64BFA3412A031C1
10 25kmE4800N2975 151 151 24267.802599090144 8033938.566120823 2020-02-10 12:24:33.269918+00 2.2.10 0:00:00.036424 [{"stratum":2,"attribute":3,"s_units_param_area":11,"s_units_cell":11,"s_units_cell_nonzero":7},{"stratum":3,"attribute":3,"s_units_param_area":126,"s_units_cell":126,"s_units_cell_nonzero":70},{"stratum":4,"attribute":3,"s_units_param_area":22,"s_units_cell":22,"s_units_cell_nonzero":2}] 0106000020651400000100000001030000000100000005000000921C33EB3AFC21C14DECCEC19FE030C1E8CCD0AB1FD621C14DB72383E88030C19FD072E77F1621C1E0BE56B11A9430C1D16EA4C39D3C21C13332B207D0F330C1921C33EB3AFC21C14DECCEC19FE030C1
11 25kmE4800N3000 155 155 22994.388155844572 8808914.435493734 2020-02-10 12:24:33.41488+00 2.2.10 0:00:00.034652 [{"stratum":2,"attribute":3,"s_units_param_area":122,"s_units_cell":122,"s_units_cell_nonzero":49},{"stratum":3,"attribute":3,"s_units_param_area":21,"s_units_cell":21,"s_units_cell_nonzero":10},{"stratum":4,"attribute":3,"s_units_param_area":7,"s_units_cell":7,"s_units_cell_nonzero":0}] 0106000020651400000100000001030000000100000005000000E8CCD0AB1FD621C14DB72383E88030C1FB9ABD1DFAAF21C1D88DEDF4312130C164BF4F2657F020C1770300FC653430C19FD072E77F1621C1E0BE56B11A9430C1E8CCD0AB1FD621C14DB72383E88030C1
12 25kmE4800N3025 159 159 18382.489655492423 7116595.247929573 2020-02-10 12:24:33.542923+00 2.2.10 0:00:00.028683 [{"stratum":2,"attribute":3,"s_units_param_area":72,"s_units_cell":72,"s_units_cell_nonzero":46}] 0106000020651400000100000001030000000100000005000000FB9ABD1DFAAF21C1D88DEDF4312130C1D6DF4550CA8921C1DF33E237F7822FC14193D98B23CA20C1ACFC12D662A92FC164BF4F2657F020C1770300FC653430C1FB9ABD1DFAAF21C1D88DEDF4312130C1
13 25kmE4800N3050 163 163 5994.290105051874 2372161.475051906 2020-02-10 12:24:33.656668+00 2.2.10 0:00:00.027707 [{"stratum":2,"attribute":3,"s_units_param_area":34,"s_units_cell":34,"s_units_cell_nonzero":15}] 0106000020651400000100000001030000000100000005000000D6DF4550CA8921C1DF33E237F7822FC165599755906321C163344CF689C32EC1E3F06026E5A320C19A3BC3FFF8E92EC14193D98B23CA20C1ACFC12D662A92FC1D6DF4550CA8921C1DF33E237F7822FC1
14 25kmE4825N2850 167 167 5540.200775633056 2169149.5893179053 2020-02-10 12:24:33.769457+00 2.2.10 0:00:00.027025 [{"stratum":4,"attribute":3,"s_units_param_area":30,"s_units_cell":30,"s_units_cell_nonzero":14}] 0106000020651400000100000001030000000100000005000000A2CC0FB18EFA21C1DE24D0B674D232C1F72794ACA7D421C185F44C2AB57232C1E146F1090D1521C16C2C1E7AE08532C1A76AA511F43A21C10ECBD7CF9DE532C1A2CC0FB18EFA21C1DE24D0B674D232C1
15 25kmE4825N2875 171 171 12663.316058589842 4884421.70607371 2020-02-10 12:24:33.892893+00 2.2.10 0:00:00.032648 [{"stratum":4,"attribute":3,"s_units_param_area":136,"s_units_cell":136,"s_units_cell_nonzero":32}] 0106000020651400000100000001030000000100000005000000F72794ACA7D421C185F44C2AB57232C1495A19AAB5AE21C1693C8394F81232C10DC11A7C1AEF20C1578CB012262632C1E146F1090D1521C16C2C1E7AE08532C1F72794ACA7D421C185F44C2AB57232C1
16 25kmE4825N2900 175 175 18846.50135887766 7365502.270854688 2020-02-10 12:24:34.029614+00 2.2.10 0:00:00.034517 [{"stratum":4,"attribute":3,"s_units_param_area":31,"s_units_cell":31,"s_units_cell_nonzero":0},{"stratum":5,"attribute":3,"s_units_param_area":128,"s_units_cell":128,"s_units_cell_nonzero":47}] 0106000020651400000100000001030000000100000005000000495A19AAB5AE21C1693C8394F81232C13C2BD6AAB88821C1DFBF02813EB331C1569450661CC920C171C540246EC631C10DC11A7C1AEF20C1578CB012262632C1495A19AAB5AE21C1693C8394F81232C1
17 25kmE4825N2925 179 179 13443.767862385928 5229730.555427466 2020-02-10 12:24:34.172791+00 2.2.10 0:00:00.036168 [{"stratum":3,"attribute":3,"s_units_param_area":34,"s_units_cell":34,"s_units_cell_nonzero":21},{"stratum":4,"attribute":3,"s_units_param_area":80,"s_units_cell":80,"s_units_cell_nonzero":0},{"stratum":5,"attribute":3,"s_units_param_area":43,"s_units_cell":43,"s_units_cell_nonzero":14}] 01060000206514000001000000010300000001000000050000003C2BD6AAB88821C1DFBF02813EB331C10D12BDB1B06221C1B5D2E379865331C136DB54C812A320C17F57F637B86631C1569450661CC920C171C540246EC631C13C2BD6AAB88821C1DFBF02813EB331C1
18 25kmE4825N2950 183 183 6605.9823963322 2269914.9674392687 2020-02-10 12:24:34.322898+00 2.2.10 0:00:00.037132 [{"stratum":2,"attribute":3,"s_units_param_area":1,"s_units_cell":1,"s_units_cell_nonzero":1},{"stratum":3,"attribute":3,"s_units_param_area":43,"s_units_cell":43,"s_units_cell_nonzero":17},{"stratum":4,"attribute":3,"s_units_param_area":118,"s_units_cell":118,"s_units_cell_nonzero":3}] 01060000206514000001000000010300000001000000050000000D12BDB1B06221C1B5D2E379865331C1D16EA4C39D3C21C13332B207D0F330C1C8EEA2A3FD7C20C1985B57D5030731C136DB54C812A320C17F57F637B86631C10D12BDB1B06221C1B5D2E379865331C1
19 25kmE4825N2975 187 187 16150.524278939045 6288012.378404437 2020-02-10 12:24:34.47145+00 2.2.10 0:00:00.036625 [{"stratum":2,"attribute":3,"s_units_param_area":67,"s_units_cell":67,"s_units_cell_nonzero":31},{"stratum":3,"attribute":3,"s_units_param_area":3,"s_units_cell":3,"s_units_cell_nonzero":1},{"stratum":4,"attribute":3,"s_units_param_area":92,"s_units_cell":92,"s_units_cell_nonzero":9}] 0106000020651400000100000001030000000100000005000000D16EA4C39D3C21C13332B207D0F330C19FD072E77F1621C1E0BE56B11A9430C1573099FBDC5620C16021308250A730C1C8EEA2A3FD7C20C1985B57D5030731C1D16EA4C39D3C21C13332B207D0F330C1
20 25kmE4825N3000 191 191 34367.26326896407 12923708.599609882 2020-02-10 12:24:34.614905+00 2.2.10 0:00:00.032943 [{"stratum":2,"attribute":3,"s_units_param_area":154,"s_units_cell":154,"s_units_cell_nonzero":86}] 01060000206514000001000000010300000001000000050000009FD072E77F1621C1E0BE56B11A9430C164BF4F2657F020C1770300FC653430C1A034A7D5B03020C16A5979C29D4730C1573099FBDC5620C16021308250A730C19FD072E77F1621C1E0BE56B11A9430C1
21 25kmE4825N3025 195 195 41160.79205468957 15284344.506177405 2020-02-10 12:24:34.74886+00 2.2.10 0:00:00.031483 [{"stratum":2,"attribute":3,"s_units_param_area":141,"s_units_cell":141,"s_units_cell_nonzero":103}] 010600002065140000010000000103000000010000000500000064BF4F2657F020C1770300FC653430C14193D98B23CA20C1ACFC12D662A92FC17AD88039790A20C148717930D6CF2FC1A034A7D5B03020C16A5979C29D4730C164BF4F2657F020C1770300FC653430C1
22 25kmE4825N3050 199 199 1998.0967016839586 796261.6303783216 2020-02-10 12:24:34.867281+00 2.2.10 0:00:00.027319 [{"stratum":2,"attribute":3,"s_units_param_area":13,"s_units_cell":13,"s_units_cell_nonzero":5}] 01060000206514000001000000010300000001000000050000004193D98B23CA20C1ACFC12D662A92FC1E3F06026E5A320C19A3BC3FFF8E92EC12FB3AD626CC81FC189FDEF0670102FC17AD88039790A20C148717930D6CF2FC14193D98B23CA20C1ACFC12D662A92FC1
23 25kmE4850N2875 203 203 9170.148346296764 3630973.0318918754 2020-02-10 12:24:34.983416+00 2.2.10 0:00:00.030333 [{"stratum":4,"attribute":3,"s_units_param_area":25,"s_units_cell":25,"s_units_cell_nonzero":10},{"stratum":5,"attribute":3,"s_units_param_area":65,"s_units_cell":65,"s_units_cell_nonzero":13}] 0106000020651400000100000001030000000100000005000000E146F1090D1521C16C2C1E7AE08532C10DC11A7C1AEF20C1578CB012262632C163C06F9F7C2F20C1233CF7EE563932C12310B3DB6F5520C1258BD5120F9932C1E146F1090D1521C16C2C1E7AE08532C1
24 25kmE4850N2900 207 207 17221.50074128605 6764341.142451347 2020-02-10 12:24:35.117343+00 2.2.10 0:00:00.035499 [{"stratum":4,"attribute":3,"s_units_param_area":34,"s_units_cell":34,"s_units_cell_nonzero":4},{"stratum":5,"attribute":3,"s_units_param_area":124,"s_units_cell":124,"s_units_cell_nonzero":39}] 01060000206514000001000000010300000001000000050000000DC11A7C1AEF20C1578CB012262632C1569450661CC920C171C540246EC631C174C43B4E7D0920C1F3CB683CA1D931C163C06F9F7C2F20C1233CF7EE563932C10DC11A7C1AEF20C1578CB012262632C1
25 25kmE4850N2925 211 211 11987.595608164662 4742110.92130544 2020-02-10 12:24:35.260506+00 2.2.10 0:00:00.034635 [{"stratum":4,"attribute":3,"s_units_param_area":52,"s_units_cell":52,"s_units_cell_nonzero":8},{"stratum":5,"attribute":3,"s_units_param_area":109,"s_units_cell":109,"s_units_cell_nonzero":22}] 0106000020651400000100000001030000000100000005000000569450661CC920C171C540246EC631C136DB54C812A320C17F57F637B86631C132C603C9E3C61FC19FA27583ED7931C174C43B4E7D0920C1F3CB683CA1D931C1569450661CC920C171C540246EC631C1
26 25kmE4850N2950 215 215 19980.25527854303 7814299.498677584 2020-02-10 12:24:35.40142+00 2.2.10 0:00:00.034298 [{"stratum":2,"attribute":3,"s_units_param_area":75,"s_units_cell":75,"s_units_cell_nonzero":39},{"stratum":4,"attribute":3,"s_units_param_area":57,"s_units_cell":57,"s_units_cell_nonzero":3},{"stratum":5,"attribute":3,"s_units_param_area":24,"s_units_cell":24,"s_units_cell_nonzero":8}] 010600002065140000010000000103000000010000000500000036DB54C812A320C17F57F637B86631C1C8EEA2A3FD7C20C1985B57D5030731C18A0D6FC0B47A1FC1473BB44A3B1A31C132C603C9E3C61FC19FA27583ED7931C136DB54C812A320C17F57F637B86631C1
27 25kmE4850N2975 219 219 29172.21184458577 11075295.55394817 2020-02-10 12:24:35.540488+00 2.2.10 0:00:00.034671 [{"stratum":2,"attribute":3,"s_units_param_area":155,"s_units_cell":155,"s_units_cell_nonzero":73}] 0106000020651400000100000001030000000100000005000000C8EEA2A3FD7C20C1985B57D5030731C1573099FBDC5620C16021308250A730C1B52607826D2E1FC197B6EB168ABA30C18A0D6FC0B47A1FC1473BB44A3B1A31C1C8EEA2A3FD7C20C1985B57D5030731C1
28 25kmE4850N3000 223 223 23977.160420207492 9189424.41071259 2020-02-10 12:24:35.680005+00 2.2.10 0:00:00.034585 [{"stratum":2,"attribute":3,"s_units_param_area":156,"s_units_cell":156,"s_units_cell_nonzero":60}] 0106000020651400000100000001030000000100000005000000573099FBDC5620C16021308250A730C1A034A7D5B03020C16A5979C29D4730C119D6D2100EE21EC127BEF76AD95A30C1B52607826D2E1FC197B6EB168ABA30C1573099FBDC5620C16021308250A730C1
29 25kmE4850N3025 227 227 17583.250974818842 6816930.467339044 2020-02-10 12:24:35.815652+00 2.2.10 0:00:00.031067 [{"stratum":2,"attribute":3,"s_units_param_area":108,"s_units_cell":108,"s_units_cell_nonzero":44}] 0106000020651400000100000001030000000100000005000000A034A7D5B03020C16A5979C29D4730C17AD88039790A20C148717930D6CF2FC19E4DF17396951EC1942F558F51F62FC119D6D2100EE21EC127BEF76AD95A30C1A034A7D5B03020C16A5979C29D4730C1
30 25kmE4850N3050 231 231 0.0 0.0 2020-02-10 12:24:35.930061+00 2.2.10 0:00:00.026903 [{"stratum":2,"attribute":3,"s_units_param_area":3,"s_units_cell":3,"s_units_cell_nonzero":0}] 01060000206514000001000000010300000001000000050000007AD88039790A20C148717930D6CF2FC12FB3AD626CC81FC189FDEF0670102FC1CF3704B706491EC110935A57EF362FC19E4DF17396951EC1942F558F51F62FC17AD88039790A20C148717930D6CF2FC1
31 25kmE4875N2875 235 235 6415.830249830692 2551394.5902774115 2020-02-10 12:24:36.039358+00 2.2.10 0:00:00.027211 [{"stratum":5,"attribute":3,"s_units_param_area":35,"s_units_cell":35,"s_units_cell_nonzero":16}] 01060000206514000001000000010300000001000000050000002310B3DB6F5520C1258BD5120F9932C163C06F9F7C2F20C1233CF7EE563932C15E769CC1B7DF1EC12DC177448B4C32C1C1C4B0D69F2B1FC1A4F1B90E41AC32C12310B3DB6F5520C1258BD5120F9932C1
32 25kmE4875N2900 239 239 26064.310389937167 10082567.227324989 2020-02-10 12:24:36.160748+00 2.2.10 0:00:00.032993 [{"stratum":5,"attribute":3,"s_units_param_area":154,"s_units_cell":154,"s_units_cell_nonzero":65}] 010600002065140000010000000103000000010000000500000063C06F9F7C2F20C1233CF7EE563932C174C43B4E7D0920C1F3CB683CA1D931C1E84A5B65B6931EC10B0287E5D7EC31C15E769CC1B7DF1EC12DC177448B4C32C163C06F9F7C2F20C1233CF7EE563932C1
33 25kmE4875N2925 243 243 36490.03454591204 13905756.81289495 2020-02-10 12:24:36.295525+00 2.2.10 0:00:00.032997 [{"stratum":5,"attribute":3,"s_units_param_area":156,"s_units_cell":156,"s_units_cell_nonzero":91}] 010600002065140000010000000103000000010000000500000074C43B4E7D0920C1F3CB683CA1D931C132C603C9E3C61FC19FA27583ED7931C1987ACBB39B471EC152966D79268D31C1E84A5B65B6931EC10B0287E5D7EC31C174C43B4E7D0920C1F3CB683CA1D931C1
34 25kmE4875N2950 247 247 17226.542067742517 6781588.134524563 2020-02-10 12:24:36.432137+00 2.2.10 0:00:00.035812 [{"stratum":2,"attribute":3,"s_units_param_area":8,"s_units_cell":8,"s_units_cell_nonzero":4},{"stratum":4,"attribute":3,"s_units_param_area":17,"s_units_cell":17,"s_units_cell_nonzero":2},{"stratum":5,"attribute":3,"s_units_param_area":131,"s_units_cell":131,"s_units_cell_nonzero":37}] 010600002065140000010000000103000000010000000500000032C603C9E3C61FC19FA27583ED7931C18A0D6FC0B47A1FC1473BB44A3B1A31C1E0C67BA167FB1DC1196CEA85762D31C1987ACBB39B471EC152966D79268D31C132C603C9E3C61FC19FA27583ED7931C1
35 25kmE4875N2975 251 251 19983.707117394842 7736781.051833919 2020-02-10 12:24:36.576733+00 2.2.10 0:00:00.035476 [{"stratum":2,"attribute":3,"s_units_param_area":130,"s_units_cell":130,"s_units_cell_nonzero":48},{"stratum":5,"attribute":3,"s_units_param_area":26,"s_units_cell":26,"s_units_cell_nonzero":2}] 01060000206514000001000000010300000001000000050000008A0D6FC0B47A1FC1473BB44A3B1A31C1B52607826D2E1FC197B6EB168ABA30C19A55F2251AAF1DC13123D98EC7CD30C1E0C67BA167FB1DC1196CEA85762D31C18A0D6FC0B47A1FC1473BB44A3B1A31C1
36 25kmE4875N3000 255 255 8791.625487409416 3462103.456230855 2020-02-10 12:24:36.715881+00 2.2.10 0:00:00.031621 [{"stratum":2,"attribute":3,"s_units_param_area":119,"s_units_cell":119,"s_units_cell_nonzero":22}] 0106000020651400000100000001030000000100000005000000B52607826D2E1FC197B6EB168ABA30C119D6D2100EE21EC127BEF76AD95A30C1D860FB3BB3621DC14AC41316196E30C19A55F2251AAF1DC13123D98EC7CD30C1B52607826D2E1FC197B6EB168ABA30C1
37 25kmE4875N3025 259 259 0.0 0.0 2020-02-10 12:24:36.834543+00 2.2.10 0:00:00.026644 [{"stratum":2,"attribute":3,"s_units_param_area":1,"s_units_cell":1,"s_units_cell_nonzero":0}] 010600002065140000010000000103000000010000000500000019D6D2100EE21EC127BEF76AD95A30C19E4DF17396951EC1942F558F51F62FC191C000E232161DC16765529B6A0E30C1D860FB3BB3621DC14AC41316196E30C119D6D2100EE21EC127BEF76AD95A30C1
38 25kmE4900N2900 263 263 8420.777202902782 3339393.093288212 2020-02-10 12:24:36.945101+00 2.2.10 0:00:00.026500 [{"stratum":5,"attribute":3,"s_units_param_area":39,"s_units_cell":39,"s_units_cell_nonzero":21}] 01060000206514000001000000010300000001000000050000005E769CC1B7DF1EC12DC177448B4C32C1E84A5B65B6931EC10B0287E5D7EC31C176240FCB6B141DC10F42EB39120032C1AD19251D70601DC13836AC2CC35F32C15E769CC1B7DF1EC12DC177448B4C32C1
39 25kmE4900N2925 267 267 23658.374046250665 9183264.490067877 2020-02-10 12:24:37.057777+00 2.2.10 0:00:00.029764 [{"stratum":5,"attribute":3,"s_units_param_area":104,"s_units_cell":104,"s_units_cell_nonzero":59}] 0106000020651400000100000001030000000100000005000000E84A5B65B6931EC10B0287E5D7EC31C1987ACBB39B471EC152966D79268D31C106642CFC4CC81CC19658163563A031C176240FCB6B141DC10F42EB39120032C1E84A5B65B6931EC10B0287E5D7EC31C1
40 25kmE4900N2950 271 271 35287.06637406878 13470739.06868922 2020-02-10 12:24:37.184283+00 2.2.10 0:00:00.032635 [{"stratum":5,"attribute":3,"s_units_param_area":159,"s_units_cell":159,"s_units_cell_nonzero":88}] 0106000020651400000100000001030000000100000005000000987ACBB39B471EC152966D79268D31C1E0C67BA167FB1DC1196CEA85762D31C122D5659D137C1CC11ADF2EA3B54031C106642CFC4CC81CC19658163563A031C1987ACBB39B471EC152966D79268D31C1
41 25kmE4900N2975 275 275 12026.941617877297 4754310.741137273 2020-02-10 12:24:37.3199+00 2.2.10 0:00:00.033067 [{"stratum":2,"attribute":3,"s_units_param_area":13,"s_units_cell":13,"s_units_cell_nonzero":2},{"stratum":5,"attribute":3,"s_units_param_area":144,"s_units_cell":144,"s_units_cell_nonzero":28}] 0106000020651400000100000001030000000100000005000000E0C67BA167FB1DC1196CEA85762D31C19A55F2251AAF1DC13123D98EC7CD30C1B455289EBF2F1CC1FFD0400709E130C122D5659D137C1CC11ADF2EA3B54031C1E0C67BA167FB1DC1196CEA85762D31C1
42 25kmE4900N3000 279 279 7598.247667509548 3014267.176998809 2020-02-10 12:24:37.450536+00 2.2.10 0:00:00.030480 [{"stratum":2,"attribute":3,"s_units_param_area":59,"s_units_cell":59,"s_units_cell_nonzero":15},{"stratum":5,"attribute":3,"s_units_param_area":44,"s_units_cell":44,"s_units_cell_nonzero":4}] 01060000206514000001000000010300000001000000050000009A55F2251AAF1DC13123D98EC7CD30C1D860FB3BB3621DC14AC41316196E30C1A3FBAAF050E31BC12A7442E25C8130C1B455289EBF2F1CC1FFD0400709E130C19A55F2251AAF1DC13123D98EC7CD30C1
43 25kmE4925N2925 283 283 801.9787812288366 321407.6055049139 2020-02-10 12:24:37.571458+00 2.2.10 0:00:00.027149 [{"stratum":5,"attribute":3,"s_units_param_area":3,"s_units_cell":3,"s_units_cell_nonzero":2}] 010600002065140000010000000103000000010000000500000076240FCB6B141DC10F42EB39120032C106642CFC4CC81CC19658163563A031C1947AD450F7481BC19CA2BFCFA3B331C115DF8C741A951BC10C571652501332C176240FCB6B141DC10F42EB39120032C1
44 25kmE4925N2950 287 287 30475.193686695755 11714704.137950491 2020-02-10 12:24:37.684847+00 2.2.10 0:00:00.029009 [{"stratum":5,"attribute":3,"s_units_param_area":85,"s_units_cell":85,"s_units_cell_nonzero":76}] 010600002065140000010000000103000000010000000500000006642CFC4CC81CC19658163563A031C122D5659D137C1CC11ADF2EA3B54031C170C8FC6AB8FC1AC118F5B2BCF85331C1947AD450F7481BC19CA2BFCFA3B331C106642CFC4CC81CC19658163563A031C1
45 25kmE4925N2975 291 291 17643.53318703441 6907070.727572438 2020-02-10 12:24:37.80519+00 2.2.10 0:00:00.031070 [{"stratum":5,"attribute":3,"s_units_param_area":136,"s_units_cell":136,"s_units_cell_nonzero":44}] 010600002065140000010000000103000000010000000500000022D5659D137C1CC11ADF2EA3B54031C1B455289EBF2F1CC1FFD0400709E130C15EBF0FAA5DB01AC16A8F4A9B4EF430C170C8FC6AB8FC1AC118F5B2BCF85331C122D5659D137C1CC11ADF2EA3B54031C1
46 25kmE4925N3000 295 295 3608.9045155297654 1440746.840901578 2020-02-10 12:24:37.919739+00 2.2.10 0:00:00.026265 [{"stratum":5,"attribute":3,"s_units_param_area":37,"s_units_cell":37,"s_units_cell_nonzero":9}] 0106000020651400000100000001030000000100000005000000B455289EBF2F1CC1FFD0400709E130C1A3FBAAF050E31BC12A7442E25C8130C11E685DF7E6631AC10620B9EBA49430C15EBF0FAA5DB01AC16A8F4A9B4EF430C1B455289EBF2F1CC1FFD0400709E130C1
47 25kmE4950N2950 299 299 3207.915124915347 1281373.3676421056 2020-02-10 12:24:38.027004+00 2.2.10 0:00:00.026486 [{"stratum":5,"attribute":3,"s_units_param_area":12,"s_units_cell":12,"s_units_cell_nonzero":8}] 0106000020651400000100000001030000000100000005000000947AD450F7481BC19CA2BFCFA3B331C170C8FC6AB8FC1AC118F5B2BCF85331C1FE2470C4557D19C1E86B8FEA3F6731C18CFA85639AC919C1FFBEBD60E8C631C1947AD450F7481BC19CA2BFCFA3B331C1
48 25kmE4950N2975 303 303 5613.851468601856 2234953.5482129725 2020-02-10 12:24:38.154211+00 2.2.10 0:00:00.035090 [{"stratum":5,"attribute":3,"s_units_param_area":29,"s_units_cell":29,"s_units_cell_nonzero":14}] 010600002065140000010000000103000000010000000500000070C8FC6AB8FC1AC118F5B2BCF85331C15EBF0FAA5DB01AC16A8F4A9B4EF430C13336C30CF43019C19627E663980731C1FE2470C4557D19C1E86B8FEA3F6731C170C8FC6AB8FC1AC118F5B2BCF85331C1

Resulting tests estimates.
Resulting tests estimates.

Automated tests performing calculations of estimates

  • fst_1p_total
  • fst_1p_ratio
  • fst_2p_gbeta
  • fst_2p_total
  • fst_2p_ratio
Clone repository
  • Data Storage
  • ETL
  • Estimates Calculation
  • Estimates Configuration
  • Functional Overview Of nFIESTA
  • Installation
  • Minimal Working Example
  • Parallel
  • References
  • Home