...
 
Commits (23)
syntax: glob
# MADS files
*.mod
*/wells
*/wells_hw_exp
*/wells_hw_exp2
wells
wells_hw*
wells_hw
wells_hwp
.cproject
*.exe
......
This diff is collapsed.
This diff is collapsed.
!**************************************************************************************
MODULE constants_NSWC
! Contains the NSWC functions IPMPAR, SPMPAR, DPMPAR, EPSLN, DEPSLN,
! EXPARG & DXPARG
!-----------------------------------------------------------------------
! WRITTEN using F90 intrinsics by
! Alan Miller
! CSIRO Mathematical & Information Sciences
! CLAYTON, VICTORIA, AUSTRALIA 3169
! Latest revision - 1 February 1997
!-----------------------------------------------------------------------
IMPLICIT NONE
INTEGER, PARAMETER :: dp = SELECTED_REAL_KIND(15, 60)
CONTAINS
FUNCTION ipmpar (i) RESULT(fn_val)
!-----------------------------------------------------------------------
! IPMPAR PROVIDES THE INTEGER MACHINE CONSTANTS FOR THE COMPUTER
! THAT IS USED. IT IS ASSUMED THAT THE ARGUMENT I IS AN INTEGER
! HAVING ONE OF THE VALUES 1-10. IPMPAR(I) HAS THE VALUE ...
! INTEGERS.
! ASSUME INTEGERS ARE REPRESENTED IN THE N-DIGIT, BASE-A FORM
! SIGN ( X(N-1)*A**(N-1) + ... + X(1)*A + X(0) )
! WHERE 0 .LE. X(I) .LT. A FOR I=0,...,N-1.
! IPMPAR(1) = A, THE BASE (radix).
! IPMPAR(2) = N, THE NUMBER OF BASE-A DIGITS (digits).
! IPMPAR(3) = A**N - 1, THE LARGEST MAGNITUDE (huge).
! FLOATING-POINT NUMBERS.
! IT IS ASSUMED THAT THE SINGLE AND DOUBLE PRECISION FLOATING
! POINT ARITHMETICS HAVE THE SAME BASE, SAY B, AND THAT THE
! NONZERO NUMBERS ARE REPRESENTED IN THE FORM
! SIGN (B**E) * (X(1)/B + ... + X(M)/B**M)
! WHERE X(I) = 0,1,...,B-1 FOR I=1,...,M,
! X(1) .GE. 1, AND EMIN .LE. E .LE. EMAX.
! IPMPAR(4) = B, THE BASE.
! SINGLE-PRECISION
! IPMPAR(5) = M, THE NUMBER OF BASE-B DIGITS.
! IPMPAR(6) = EMIN, THE SMALLEST EXPONENT E.
! IPMPAR(7) = EMAX, THE LARGEST EXPONENT E.
! DOUBLE-PRECISION
! IPMPAR(8) = M, THE NUMBER OF BASE-B DIGITS.
! IPMPAR(9) = EMIN, THE SMALLEST EXPONENT E.
! IPMPAR(10) = EMAX, THE LARGEST EXPONENT E.
!-----------------------------------------------------------------------
IMPLICIT NONE
INTEGER, INTENT(IN) :: i
INTEGER :: fn_val
SELECT CASE(i)
CASE( 1)
fn_val = RADIX(i)
CASE( 2)
fn_val = DIGITS(i)
CASE( 3)
fn_val = HUGE(i)
CASE( 4)
fn_val = RADIX(1.0)
CASE( 5)
fn_val = DIGITS(1.0)
CASE( 6)
fn_val = MINEXPONENT(1.0)
CASE( 7)
fn_val = MAXEXPONENT(1.0)
CASE( 8)
fn_val = DIGITS(1.0D0)
CASE( 9)
fn_val = MINEXPONENT(1.0D0)
CASE(10)
fn_val = MAXEXPONENT(1.0D0)
CASE DEFAULT
RETURN
END SELECT
RETURN
END FUNCTION ipmpar
FUNCTION spmpar (i) RESULT(fn_val)
!-----------------------------------------------------------------------
! SPMPAR PROVIDES THE SINGLE PRECISION MACHINE CONSTANTS FOR
! THE COMPUTER BEING USED. IT IS ASSUMED THAT THE ARGUMENT
! I IS AN INTEGER HAVING ONE OF THE VALUES 1, 2, OR 3. IF THE
! SINGLE PRECISION ARITHMETIC BEING USED HAS M BASE B DIGITS AND
! ITS SMALLEST AND LARGEST EXPONENTS ARE EMIN AND EMAX, THEN
! SPMPAR(1) = B**(1 - M), THE MACHINE PRECISION,
! SPMPAR(2) = B**(EMIN - 1), THE SMALLEST MAGNITUDE,
! SPMPAR(3) = B**EMAX*(1 - B**(-M)), THE LARGEST MAGNITUDE.
!-----------------------------------------------------------------------
IMPLICIT NONE
INTEGER, INTENT(IN) :: i
REAL :: fn_val
! Local variable
REAL :: one = 1.0
SELECT CASE (i)
CASE (1)
fn_val = EPSILON(one)
CASE (2)
fn_val = TINY(one)
CASE (3)
fn_val = HUGE(one)
END SELECT
RETURN
END FUNCTION spmpar
FUNCTION dpmpar (i) RESULT(fn_val)
!-----------------------------------------------------------------------
! DPMPAR PROVIDES THE DOUBLE PRECISION MACHINE CONSTANTS FOR
! THE COMPUTER BEING USED. IT IS ASSUMED THAT THE ARGUMENT
! I IS AN INTEGER HAVING ONE OF THE VALUES 1, 2, OR 3. IF THE
! DOUBLE PRECISION ARITHMETIC BEING USED HAS M BASE B DIGITS AND
! ITS SMALLEST AND LARGEST EXPONENTS ARE EMIN AND EMAX, THEN
! DPMPAR(1) = B**(1 - M), THE MACHINE PRECISION,
! DPMPAR(2) = B**(EMIN - 1), THE SMALLEST MAGNITUDE,
! DPMPAR(3) = B**EMAX*(1 - B**(-M)), THE LARGEST MAGNITUDE.
!-----------------------------------------------------------------------
IMPLICIT NONE
INTEGER, INTENT(IN) :: i
REAL (dp) :: fn_val
! Local variable
REAL (dp) :: one = 1._dp
SELECT CASE (i)
CASE (1)
fn_val = EPSILON(one)
CASE (2)
fn_val = TINY(one)
CASE (3)
fn_val = HUGE(one)
END SELECT
RETURN
END FUNCTION dpmpar
FUNCTION epsln () RESULT(fn_val)
!--------------------------------------------------------------------
! THE EVALUATION OF LN(EPS) WHERE EPS IS THE SMALLEST NUMBER
! SUCH THAT 1.0 + EPS .GT. 1.0 . L IS A DUMMY ARGUMENT.
!--------------------------------------------------------------------
IMPLICIT NONE
REAL :: fn_val
! Local variable
REAL :: one = 1.0
fn_val = LOG( EPSILON(one) )
RETURN
END FUNCTION epsln
FUNCTION exparg (l) RESULT(fn_val)
!--------------------------------------------------------------------
! IF L = 0 THEN EXPARG(L) = THE LARGEST POSITIVE W FOR WHICH
! EXP(W) CAN BE COMPUTED.
!
! IF L IS NONZERO THEN EXPARG(L) = THE LARGEST NEGATIVE W FOR
! WHICH THE COMPUTED VALUE OF EXP(W) IS NONZERO.
!
! NOTE... ONLY AN APPROXIMATE VALUE FOR EXPARG(L) IS NEEDED.
!--------------------------------------------------------------------
IMPLICIT NONE
INTEGER, INTENT(IN) :: l
REAL :: fn_val
! Local variable
REAL :: one = 1.0
IF (l == 0) THEN
fn_val = LOG( HUGE(one) )
ELSE
fn_val = LOG( TINY(one) )
END IF
RETURN
END FUNCTION exparg
FUNCTION depsln () RESULT(fn_val)
!--------------------------------------------------------------------
! THE EVALUATION OF LN(EPS) WHERE EPS IS THE SMALLEST NUMBER
! SUCH THAT 1.D0 + EPS .GT. 1.D0 . L IS A DUMMY ARGUMENT.
!--------------------------------------------------------------------
IMPLICIT NONE
REAL (dp) :: fn_val
! Local variable
REAL (dp) :: one = 1._dp
fn_val = LOG( EPSILON(one) )
RETURN
END FUNCTION depsln
FUNCTION dxparg (l) RESULT(fn_val)
!--------------------------------------------------------------------
! IF L = 0 THEN DXPARG(L) = THE LARGEST POSITIVE W FOR WHICH
! DEXP(W) CAN BE COMPUTED.
!
! IF L IS NONZERO THEN DXPARG(L) = THE LARGEST NEGATIVE W FOR
! WHICH THE COMPUTED VALUE OF DEXP(W) IS NONZERO.
!
! NOTE... ONLY AN APPROXIMATE VALUE FOR DXPARG(L) IS NEEDED.
!--------------------------------------------------------------------
IMPLICIT NONE
INTEGER, INTENT(IN) :: l
REAL (dp) :: fn_val
! Local variable
REAL (dp) :: one = 1._dp
IF (l == 0) THEN
fn_val = LOG( HUGE(one) )
ELSE
fn_val = LOG( TINY(one) )
END IF
RETURN
END FUNCTION dxparg
END MODULE constants_NSWC
......@@ -3,7 +3,7 @@
#define YES 1
#define NO 0
#define MAXFILENAME 1024
#define MAXFILENAME 1024
/* Data extensions */
#define DATAEXT ".dat"
......
This diff is collapsed.
#!/bin/tcsh -f
if($#argv < 1) then
echo "Figure Name misssing ??"
exit(0)
endif
echo "making $1.eps"
gnuplot -persist << EOF
set term postscript eps enhanced color
set output "$1.eps"
set xlabel "Time [ Days ] "
set ylabel " Drawdown [ m ] "
set ytics nomirror
set style line 1 lt 1 lw 3 pt 3 lc rgb "red"
plot "$1.s_point" using 1:5 title "Line" w l ls 1
EOF
epstopdf $1.eps
[OB x:5 y:0 #times:100] Cols: Time elev total_dd trend_dd
0.01 100.000000 8.16828e-16 0 8.16828e-16
0.0114976 100.000000 5.55504e-15 1.49757e-103 5.55504e-15
0.0132194 100.000000 1.00095e-13 3.21941e-103 1.00095e-13
0.0151991 100.000000 2.29503e-12 5.19911e-103 2.29503e-12
0.0174753 100.000000 3.8569e-11 7.47528e-103 3.8569e-11
0.0200923 100.000000 4.5684e-10 1.00923e-102 4.5684e-10
0.0231013 100.000000 3.93768e-09 1.31013e-102 3.93768e-09
0.0265609 100.000000 2.55709e-08 1.65609e-102 2.55709e-08
0.0305386 100.000000 1.29151e-07 2.05386e-102 1.29151e-07
0.0351119 99.999999 5.23668e-07 2.51119e-102 5.23668e-07
0.0403702 99.999998 1.77314e-06 3.03702e-102 1.77314e-06
0.0464159 99.999995 5.32576e-06 3.64159e-102 5.32576e-06
0.053367 99.999985 1.54818e-05 4.3367e-102 1.54818e-05
0.0613591 99.999953 4.69948e-05 5.13591e-102 4.69948e-05
0.070548 99.999851 0.000148921 6.0548e-102 0.000148921
0.0811131 99.999537 0.000463039 7.11131e-102 0.000463039
0.0932603 99.998664 0.00133637 8.32603e-102 0.00133637
0.107227 99.996508 0.00349188 9.72267e-102 0.00349188
0.123285 99.991773 0.00822711 1.13285e-101 0.00822711
0.141747 99.982429 0.0175706 1.31747e-101 0.0175706
0.162975 99.965694 0.0343065 1.52975e-101 0.0343065
0.187382 99.938201 0.0617989 1.77382e-101 0.0617989
0.215443 99.896390 0.10361 2.05443e-101 0.10361
0.247708 99.837021 0.162979 2.37708e-101 0.162979
0.284804 99.757692 0.242308 2.74804e-101 0.242308
0.327455 99.657225 0.342775 3.17455e-101 0.342775
0.376494 99.535798 0.464202 3.66494e-101 0.464202
0.432876 99.394814 0.605186 4.22876e-101 0.605186
0.497702 99.236570 0.76343 4.87702e-101 0.76343
0.572237 99.063840 0.93616 5.62237e-101 0.93616
0.657933 98.879513 1.12049 6.47933e-101 1.12049
0.756463 98.686368 1.31363 7.46463e-101 1.31363
0.869749 98.487029 1.51297 8.59749e-101 1.51297
1 98.284051 1.71595 9.9e-101 1.71595
1.14976 98.080056 1.91994 1.13976e-100 1.91994
1.32194 97.877845 2.12215 1.31194e-100 2.12215
1.51991 97.680399 2.3196 1.50991e-100 2.3196
1.74753 97.490774 2.50923 1.73753e-100 2.50923
2.00923 97.311896 2.6881 1.99923e-100 2.6881
2.31013 97.146324 2.85368 2.30013e-100 2.85368
2.65609 96.996030 3.00397 2.64609e-100 3.00397
3.05386 96.862229 3.13777 3.04386e-100 3.13777
3.51119 96.745287 3.25471 3.50119e-100 3.25471
4.03702 96.644705 3.3553 4.02702e-100 3.3553
4.64159 96.559179 3.44082 4.63159e-100 3.44082
5.3367 96.486737 3.51326 5.3267e-100 3.51326
6.13591 96.424939 3.57506 6.12591e-100 3.57506
7.0548 96.371110 3.62889 7.0448e-100 3.62889
8.11131 96.322584 3.67742 8.10131e-100 3.67742
9.32603 96.276915 3.72309 9.31603e-100 3.72309
10.7227 96.232022 3.76798 1.07127e-99 3.76798
12.3285 96.186246 3.81375 1.23185e-99 3.81375
14.1747 96.138331 3.86167 1.41647e-99 3.86167
16.2975 96.087340 3.91266 1.62875e-99 3.91266
18.7382 96.032548 3.96745 1.87282e-99 3.96745
21.5443 95.973344 4.02666 2.15343e-99 4.02666
24.7708 95.909149 4.09085 2.47608e-99 4.09085
28.4804 95.839370 4.16063 2.84704e-99 4.16063
32.7455 95.763367 4.23663 3.27355e-99 4.23663
37.6494 95.680438 4.31956 3.76394e-99 4.31956
43.2876 95.589806 4.41019 4.32776e-99 4.41019
49.7702 95.490607 4.50939 4.97602e-99 4.50939
57.2237 95.381885 4.61811 5.72137e-99 4.61811
65.7933 95.262576 4.73742 6.57833e-99 4.73742
75.6463 95.131499 4.8685 7.56363e-99 4.8685
86.9749 94.987351 5.01265 8.69649e-99 5.01265
100 94.828691 5.17131 9.999e-99 5.17131
114.976 94.653937 5.34606 1.14966e-98 5.34606
132.194 94.461361 5.53864 1.32184e-98 5.53864
151.991 94.249083 5.75092 1.51981e-98 5.75092
174.753 94.015081 5.98492 1.74743e-98 5.98492
200.923 93.757197 6.2428 2.00913e-98 6.2428
231.013 93.473159 6.52684 2.31003e-98 6.52684
265.609 93.160610 6.83939 2.65599e-98 6.83939
305.386 92.817149 7.18285 3.05376e-98 7.18285
351.119 92.440390 7.55961 3.51109e-98 7.55961
403.702 92.028036 7.97196 4.03692e-98 7.97196
464.159 91.577956 8.42204 4.64149e-98 8.42204
533.67 91.088292 8.91171 5.3366e-98 8.91171
613.591 90.557559 9.44244 6.13581e-98 9.44244
705.48 89.984752 10.0152 7.0547e-98 10.0152
811.131 89.369444 10.6306 8.11121e-98 10.6306
932.603 88.711865 11.2881 9.32593e-98 11.2881
1072.27 88.012950 11.987 1.07226e-97 11.987
1232.85 87.274348 12.7257 1.23284e-97 12.7257
1417.47 86.498374 13.5016 1.41746e-97 13.5016
1629.75 85.687923 14.3121 1.62974e-97 14.3121
1873.82 84.846324 15.1537 1.87381e-97 15.1537
2154.43 83.977171 16.0228 2.15442e-97 16.0228
2477.08 83.084135 16.9159 2.47707e-97 16.9159
2848.04 82.170785 17.8292 2.84803e-97 17.8292
3274.55 81.240443 18.7596 3.27454e-97 18.7596
3764.94 80.296077 19.7039 3.76493e-97 19.7039
4328.76 79.340252 20.6597 4.32875e-97 20.6597
4977.02 78.375117 21.6249 4.97701e-97 21.6249
5722.37 77.402438 22.5976 5.72236e-97 22.5976
6579.33 76.423639 23.5764 6.57932e-97 23.5764
7564.63 75.439862 24.5601 7.56462e-97 24.5601
8697.49 74.452015 25.548 8.69748e-97 25.548
10000 73.460821 26.5392 9.99999e-97 26.5392
Problem name: test
Aquifer type : UNCONFINED
Solution type : Mishra-neuman
Boundary information: 1 1 0 0 0
--- Number of wells: 1
Well name : Pumping
Location (x y rw) :0.0 0.0 0.0
Penetration (d,l) :0.0 3.5
Initial Head : 100
Aquifer thickness(log): 0.84509804
Permeability : -2.845
Storativity : -3.0
Anisotropy Ratio : 0.0
Wellbore Storage(CwD) : -5.0
Leakage coefficient : -10
Unsaturated Thickness : 2.0
Specific Yield : -0.6020
Rel. perm exponent : 1
saturation exponent : 1
pressure cutoff : 0.0
Step(0) or Linear (1) : step
No. of Pumping Times :2
0 1
1.0e6 1
--- Numerical inversion paramters
Hankel Parameters : 15 15 1.0e-3 1.0e-3 1000
Laplace Paramter : 1.0e-8 0.0 1.2
--- Number of points: 1
Obs. Well name : OB
Location (x,y) : 5.0 0.0
Pentration (z1,z2) : 3.5 3.5
Initial Head : 100
Slope (log) : -100
number of Obs Times :100
0.0100000000000000
0.0114975699539774
0.0132194114846603
0.0151991108295293
0.0174752840000768
0.0200923300256505
0.0231012970008316
0.0265608778294669
0.0305385550883342
0.0351119173421513
0.0403701725859655
0.0464158883361278
0.0533669923120631
0.0613590727341317
0.0705480231071865
0.0811130830789687
0.0932603346883220
0.107226722201032
0.123284673944207
0.141747416292681
0.162975083462064
0.187381742286038
0.215443469003188
0.247707635599171
0.284803586843580
0.327454916287773
0.376493580679247
0.432876128108306
0.497702356433211
0.572236765935022
0.657933224657568
0.756463327554629
0.869749002617783
1
1.14975699539774
1.32194114846603
1.51991108295293
1.74752840000768
2.00923300256505
2.31012970008316
2.65608778294669
3.05385550883342
3.51119173421513
4.03701725859655
4.64158883361278
5.33669923120631
6.13590727341318
7.05480231071865
8.11130830789687
9.32603346883220
10.7226722201032
12.3284673944207
14.1747416292680
16.2975083462064
18.7381742286039
21.5443469003188
24.7707635599171
28.4803586843580
32.7454916287773
37.6493580679247
43.2876128108306
49.7702356433211
57.2236765935022
65.7933224657568
75.6463327554629
86.9749002617783
100
114.975699539774
132.194114846603
151.991108295293
174.752840000768
200.923300256505
231.012970008316
265.608778294668
305.385550883341
351.119173421513
403.701725859656
464.158883361278
533.669923120631
613.590727341318
705.480231071865
811.130830789687
932.603346883220
1072.26722201032
1232.84673944207
1417.47416292680
1629.75083462064
1873.81742286038
2154.43469003188
2477.07635599171
2848.03586843580
3274.54916287773
3764.93580679247
4328.76128108306
4977.02356433211
5722.36765935022
6579.33224657568
7564.63327554629
8697.49002617784
10000
Problem name: test
Aquifer type : 2
Solution type : Mishra-Neuman
Boundary information: 1 1 0 0 0
--- Number of wells: 1
Pumping 0 0 0 2
Initial Head : 100
Aquifer Tickness : 7
Permeability : -2.845
Storage coefficient : -3
Leakage coefficient : 1e-10
0 1
1e+06 1
--- Number of points: 1
OB 5 0 100 100
Initial Head : 100
Water-level slope : 1e-100
0.01
0.0114976
0.0132194
0.0151991
0.0174753
0.0200923
0.0231013
0.0265609
0.0305386
0.0351119
0.0403702
0.0464159
0.053367
0.0613591
0.070548
0.0811131
0.0932603
0.107227
0.123285
0.141747
0.162975
0.187382
0.215443
0.247708
0.284804
0.327455
0.376494
0.432876
0.497702
0.572237
0.657933
0.756463
0.869749
1
1.14976
1.32194
1.51991
1.74753
2.00923
2.31013
2.65609
3.05386
3.51119
4.03702
4.64159
5.3367
6.13591
7.0548
8.11131
9.32603
10.7227
12.3285
14.1747
16.2975
18.7382
21.5443
24.7708
28.4804
32.7455
37.6494
43.2876
49.7702
57.2237
65.7933
75.6463
86.9749
100
114.976
132.194
151.991
174.753
200.923
231.013
265.609
305.386
351.119
403.702
464.159
533.67
613.591
705.48
811.131
932.603
1072.27
1232.85
1417.47
1629.75
1873.82
2154.43
2477.08
2848.04
3274.55
3764.94
4328.76
4977.02
5722.37
6579.33
7564.63
8697.49
10000
Prod well, obs well, Harm. mean perm., geom. mean storage coeff.
0 0 0.00142889 0.001
Prod well, prod well, Harm. mean perm., geom. mean storage coeff.
0 0 0.00142889 0.001
[OB x:5 y:0 #times:100] Cols: Time elev total_dd trend_dd
0.01 100.000000 1.22467e-18 0 1.22467e-18
0.0114976 100.000000 3.35137e-17 1.49757e-103 3.35137e-17
0.0132194 100.000000 4.33313e-16 3.21941e-103 4.33313e-16
0.0151991 100.000000 4.06903e-15 5.19911e-103 4.06903e-15
0.0174753 100.000000 2.90832e-14 7.47528e-103 2.90832e-14
0.0200923 100.000000 1.7055e-13 1.00923e-102 1.7055e-13
0.0231013 100.000000 1.2497e-12 1.31013e-102 1.2497e-12
0.0265609 100.000000 2.25256e-11 1.65609e-102 2.25256e-11
0.0305386 100.000000 4.91804e-10 2.05386e-102 4.91804e-10
0.0351119 100.000000 7.9498e-09 2.51119e-102 7.9498e-09
0.0403702 100.000000 9.19218e-08 3.03702e-102 9.19218e-08
0.0464159 99.999999 7.86759e-07 3.64159e-102 7.86759e-07
0.053367 99.999995 5.17552e-06 4.3367e-102 5.17552e-06
0.0613591 99.999973 2.70667e-05 5.13591e-102 2.70667e-05
0.070548 99.999884 0.000115913 6.0548e-102 0.000115913
0.0811131 99.999583 0.000417085 7.11131e-102 0.000417085
0.0932603 99.998710 0.00128954 8.32603e-102 0.00128954
0.107227 99.996507 0.00349313 9.72267e-102 0.00349313
0.123285 99.991569 0.00843149 1.13285e-101 0.00843149
0.141747 99.981597 0.0184028 1.31747e-101 0.0184028
0.162975 99.963213 0.0367875 1.52975e-101 0.0367875
0.187382 99.931897 0.068103 1.77382e-101 0.068103
0.215443 99.882112 0.117888 2.05443e-101 0.117888
0.247708 99.807581 0.192419 2.37708e-101 0.192419
0.284804 99.701694 0.298306 2.74804e-101 0.298306
0.327455 99.557962 0.442038 3.17455e-101 0.442038
0.376494 99.370449 0.629551 3.66494e-101 0.629551
0.432876 99.134123 0.865877 4.22876e-101 0.865877
0.497702 98.845099 1.1549 4.87702e-101 1.1549
0.572237 98.500756 1.49924 5.62237e-101 1.49924
0.657933 98.099741 1.90026 6.47933e-101 1.90026
0.756463 97.641890 2.35811 7.46463e-101 2.35811
0.869749 97.128082 2.87192 8.59749e-101 2.87192
1 96.560065 3.43994 9.9e-101 3.43994
1.14976 95.940260 4.05974 1.13976e-100 4.05974
1.32194 95.271582 4.72842 1.31194e-100 4.72842
1.51991 94.557268 5.44273 1.50991e-100 5.44273
1.74753 93.800734 6.19927 1.73753e-100 6.19927
2.00923 93.005450 6.99455 1.99923e-100 6.99455
2.31013 92.174852 7.82515 2.30013e-100 7.82515
2.65609 91.312263 8.68774 2.64609e-100 8.68774
3.05386 90.420849 9.57915 3.04386e-100 9.57915
3.51119 89.503582 10.4964 3.50119e-100 10.4964
4.03702 88.563217 11.4368 4.02702e-100 11.4368
4.64159 87.602292 12.3977 4.63159e-100 12.3977
5.3367 86.623118 13.3769 5.3267e-100 13.3769
6.13591 85.627789 14.3722 6.12591e-100 14.3722
7.0548 84.618194 15.3818 7.0448e-100 15.3818
8.11131 83.596024 16.404 8.10131e-100 16.404
9.32603 82.562789 17.4372 9.31603e-100 17.4372
10.7227 81.519833 18.4802 1.07127e-99 18.4802
12.3285 80.468348 19.5317 1.23185e-99 19.5317
14.1747 79.409388 20.5906 1.41647e-99 20.5906
16.2975 78.343883 21.6561 1.62875e-99 21.6561
18.7382 77.272653 22.7273 1.87282e-99 22.7273
21.5443 76.196418 23.8036 2.15343e-99 23.8036
24.7708 75.115812 24.8842 2.47608e-99 24.8842
28.4804 74.031389 25.9686 2.84704e-99 25.9686
32.7455 72.943635 27.0564 3.27355e-99 27.0564
37.6494 71.852977 28.147 3.76394e-99 28.147
43.2876 70.759785 29.2402 4.32776e-99 29.2402
49.7702 69.664385 30.3356 4.97602e-99 30.3356
57.2237 68.567061 31.4329 5.72137e-99 31.4329
65.7933 67.468062 32.5319 6.57833e-99 32.5319
75.6463 66.367602 33.6324 7.56363e-99 33.6324
86.9749 65.265871 34.7341 8.69649e-99 34.7341
100 64.163033 35.837 9.999e-99 35.837
114.976 63.059232 36.9408 1.14966e-98 36.9408
132.194 61.954592 38.0454 1.32184e-98 38.0454
151.991 60.849221 39.1508 1.51981e-98 39.1508
174.753 59.743215 40.2568 1.74743e-98 40.2568
200.923 58.636657 41.3633 2.00913e-98 41.3633
231.013 57.529617 42.4704 2.31003e-98 42.4704
265.609 56.422159 43.5778 2.65599e-98 43.5778
305.386 55.314336 44.6857 3.05376e-98 44.6857
351.119 54.206196 45.7938 3.51109e-98 45.7938
403.702 53.097781 46.9022 4.03692e-98 46.9022
464.159 51.989126 48.0109 4.64149e-98 48.0109
533.67 50.880263 49.1197 5.3366e-98 49.1197
613.591 49.771217 50.2288 6.13581e-98 50.2288
705.48 48.662014 51.338 7.0547e-98 51.338
811.131 47.552674 52.4473 8.11121e-98 52.4473
932.603 46.443214 53.5568 9.32593e-98 53.5568
1072.27 45.333650 54.6663 1.07226e-97 54.6663
1232.85 44.223996 55.776 1.23284e-97 55.776
1417.47 43.114264 56.8857 1.41746e-97 56.8857
1629.75 42.004463 57.9955 1.62974e-97 57.9955
1873.82 40.894602 59.1054 1.87381e-97 59.1054
2154.43 39.784690 60.2153 2.15442e-97 60.2153
2477.08 38.674732 61.3253 2.47707e-97 61.3253
2848.04 37.564736 62.4353 2.84803e-97 62.4353
3274.55 36.454705 63.5453 3.27454e-97 63.5453
3764.94 35.344645 64.6554 3.76493e-97 64.6554
4328.76 34.234559 65.7654 4.32875e-97 65.7654
4977.02 33.124451 66.8755 4.97701e-97 66.8755
5722.37 32.014323 67.9857 5.72236e-97 67.9857
6579.33 30.904179 69.0958 6.57932e-97 69.0958
7564.63 29.794019 70.206 7.56462e-97 70.206
8697.49 28.683847 71.3162 8.69748e-97 71.3162
10000 27.573664 72.4263 9.99999e-97 72.4263
Problem name: test
Aquifer type : CONFINED
Solution type : Theis
Boundary information: 1 1 0 0 0
--- Number of wells: 1
Well name : Pumping
Location (x y rw) :0.0 0.0 0.0
Penetration (d,l) :0.0 3.5
Initial Head : 100
Aquifer thickness(log): 0.84509804
Permeability : -2.845
Storativity : -3.0
Anisotropy Ratio : 0.0
Wellbore Storage(CwD) : -5.0
Leakage coefficient : -10
Unsaturated Thickness : 2.0
Specific Yield : -0.6020
Rel. perm exponent : 1
saturation exponent : 1
pressure cutoff : 0.0
Step(0) or Linear (1) : step
No. of Pumping Times :2
0 1
1.0e6 1
--- Numerical inversion paramters
Hankel Parameters : 15 15 1.0e-3 1.0e-3 1000
Laplace Paramter : 1.0e-8 0.0 1.2
--- Number of points: 1
Obs. Well name : OB
Location (x,y) : 5.0 0.0
Pentration (z1,z2) : 3.5 3.5
Initial Head : 100
Slope (log) : -100
number of Obs Times :100
0.0100000000000000
0.0114975699539774
0.0132194114846603
0.0151991108295293
0.0174752840000768
0.0200923300256505
0.0231012970008316
0.0265608778294669
0.0305385550883342
0.0351119173421513
0.0403701725859655
0.0464158883361278
0.0533669923120631
0.0613590727341317
0.0705480231071865
0.0811130830789687
0.0932603346883220
0.107226722201032
0.123284673944207
0.141747416292681
0.162975083462064
0.187381742286038
0.215443469003188
0.247707635599171
0.284803586843580
0.327454916287773
0.376493580679247
0.432876128108306
0.497702356433211
0.572236765935022
0.657933224657568
0.756463327554629
0.869749002617783
1
1.14975699539774
1.32194114846603
1.51991108295293
1.74752840000768
2.00923300256505
2.31012970008316
2.65608778294669
3.05385550883342
3.51119173421513
4.03701725859655
4.64158883361278
5.33669923120631
6.13590727341318
7.05480231071865
8.11130830789687
9.32603346883220
10.7226722201032
12.3284673944207
14.1747416292680
16.2975083462064
18.7381742286039
21.5443469003188
24.7707635599171
28.4803586843580
32.7454916287773
37.6493580679247
43.2876128108306
49.7702356433211
57.2236765935022
65.7933224657568
75.6463327554629
86.9749002617783
100
114.975699539774
132.194114846603
151.991108295293
174.752840000768
200.923300256505
231.012970008316
265.608778294668
305.385550883341
351.119173421513
403.701725859656
464.158883361278
533.669923120631
613.590727341318
705.480231071865
811.130830789687
932.603346883220
1072.26722201032
1232.84673944207
1417.47416292680
1629.75083462064
1873.81742286038
2154.43469003188
2477.07635599171
2848.03586843580
3274.54916287773
3764.93580679247
4328.76128108306
4977.02356433211
5722.36765935022
6579.33224657568
7564.63327554629
8697.49002617784
10000
Problem name: test
Aquifer type : 1
Solution type : Theis
Boundary information: 1 1 0 0 0
--- Number of wells: 1
Pumping 0 0 0 2
Initial Head : 100
Aquifer Tickness : 7
Permeability : -2.845
Storage coefficient : -3
Leakage coefficient : 1e-10
0 1
1e+06 1
--- Number of points: 1
OB 5 0 100 100
Initial Head : 100
Water-level slope : 1e-100
0.01
0.0114976
0.0132194
0.0151991
0.0174753
0.0200923
0.0231013
0.0265609
0.0305386
0.0351119
0.0403702
0.0464159
0.053367
0.0613591
0.070548
0.0811131
0.0932603
0.107227
0.123285
0.141747
0.162975
0.187382
0.215443
0.247708
0.284804
0.327455
0.376494
0.432876
0.497702
0.572237
0.657933
0.756463
0.869749
1
1.14976
1.32194
1.51991
1.74753
2.00923
2.31013
2.65609
3.05386
3.51119
4.03702
4.64159
5.3367
6.13591
7.0548
8.11131
9.32603
10.7227
12.3285
14.1747
16.2975
18.7382
21.5443
24.7708
28.4804
32.7455
37.6494
43.2876
49.7702
57.2237
65.7933
75.6463
86.9749
100
114.976
132.194
151.991
174.753
200.923
231.013
265.609
305.386
351.119
403.702
464.159
533.67
613.591
705.48
811.131
932.603
1072.27
1232.85
1417.47
1629.75
1873.82
2154.43
2477.08
2848.04
3274.55
3764.94
4328.76
4977.02
5722.37
6579.33
7564.63
8697.49
10000
Prod well, obs well, Harm. mean perm., geom. mean storage coeff.
0 0 0.00142889 0.001
Prod well, prod well, Harm. mean perm., geom. mean storage coeff.
0 0 0.00142889 0.001
#define MAXNAME 61
#define MAXNAME 1024
enum AQUIFER_TYPE {CONFINED = 1, UNCONFINED, LEAKY, LEAKY_UNCONFINED};
enum BOUNDARY_TYPE {NO_BOUNDARY = 1, TYPE_1, TYPE_2};
......
#define MAXNAME 61
#define MAXFILENAME 95
#define MAXNAME 1024
#define MAXFILENAME 1024
enum AQUIFER_TYPE {CONFINED = 1, UNCONFINED, LEAKY, LEAKY_UNCONFINED};
enum BOUNDARY_TYPE {NO_BOUNDARY = 1, TYPE_1, TYPE_2};
......
This diff is collapsed.
#define MAXNAME 61
#define MAXFILENAME 1024
#define MAXNAME 1024
#define MAXFILENAME 1024
#define TRUE 1
#define FALSE 0
#define YES 1
......