Skip to content
GitLab
    • GitLab: the DevOps platform
    • Explore GitLab
    • Install GitLab
    • How GitLab compares
    • Get started
    • GitLab docs
    • GitLab Learn
  • Pricing
  • Talk to an expert
  • /
  • Help
    • Help
    • Support
    • Community forum
    • Submit feedback
    • Contribute to GitLab
    • Switch to GitLab Next
    Projects Groups Snippets
  • Register
  • Sign in
  • eigen eigen
  • Project information
    • Project information
    • Activity
    • Labels
    • Members
  • Repository
    • Repository
    • Files
    • Commits
    • Branches
    • Tags
    • Contributors
    • Graph
    • Compare
    • Locked Files
  • Issues 686
    • Issues 686
    • List
    • Boards
    • Service Desk
    • Milestones
    • Requirements
  • Custom issue tracker
    • Custom issue tracker
  • Merge requests 27
    • Merge requests 27
  • CI/CD
    • CI/CD
    • Pipelines
    • Jobs
    • Schedules
    • Test Cases
  • Deployments
    • Deployments
    • Environments
    • Releases
  • Packages and registries
    • Packages and registries
    • Package Registry
    • Container Registry
    • Infrastructure Registry
  • Monitor
    • Monitor
    • Incidents
  • Analytics
    • Analytics
    • Value stream
    • CI/CD
    • Code review
    • Insights
    • Issue
    • Repository
  • Snippets
    • Snippets
  • Activity
  • Graph
  • Create a new issue
  • Jobs
  • Commits
  • Issue Boards
Collapse sidebar
  • libeigenlibeigen
  • eigeneigen
  • Issues
  • #326
Closed
Open
Issue created Dec 04, 2019 by Eigen Bugzilla@eigenbzReporter

Expose tridiagonal eigensolver to end-users

Submitted by Erlend Aune

Assigned to Nobody

Link to original bugzilla bug (#326)
Version: 3.0

Description

In the module SelfAdjointEigensolver, the method <<tridiagonal_qr_step>> together with some code in <<SelfAdjointEigenSolver<..>& SelfAdjointEigenSolver<MatrixType>::compute(..)>> computes the eigenvalues and, optionally, the eigenvectors of a tridiagonal symmetric matrix. This method should be exposed to end-users and provide and interface to self-adjoint tridiagonal matrices and two vectors containing the diagonal and off-diagonal elements respectively.

Blocking

#558 (closed)

Edited Dec 05, 2019 by Eigen Bugzilla
Assignee
Assign to
Time tracking