frame_data_sequence.c 10.5 KB
Newer Older
Mati's avatar
Mati committed
1 2 3
/* frame_data_sequence.c
 * Implements a sequence of frame_data structures
 *
4
 * $Id: frame_data_sequence.c 46318 2012-12-01 22:44:17Z guy $
Mati's avatar
Mati committed
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
 *
 * Wireshark - Network traffic analyzer
 * By Gerald Combs <gerald@wireshark.org>
 * Copyright 1998 Gerald Combs
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
 */

#ifdef HAVE_CONFIG_H
# include "config.h"
#endif

#include <glib.h>

#include <epan/packet.h>

#include "frame_data_sequence.h"

/*
 * We store the frame_data structures in a radix tree, with 1024
 * elements per level.  The leaf nodes are arrays of 1024 frame_data
 * structures; the nodes above them are arrays of 1024 pointers to
 * the nodes below them.  The capture_file structure has a pointer
 * to the root node.
 *
 * As frame numbers are 32 bits, and as 1024 is 2^10, that gives us
 * up to 4 levels of tree.
 */
#define LOG2_NODES_PER_LEVEL	10
#define NODES_PER_LEVEL		(1<<LOG2_NODES_PER_LEVEL)

struct _frame_data_sequence {
  guint32      count;           /* Total number of frames */
  void        *ptree_root;      /* Pointer to the root node */
};

/*
 * For a given frame number, calculate the indices into a level 3
 * node, a level 2 node, a level 1 node, and a leaf node.
 */
#define LEVEL_3_INDEX(framenum) \
	((framenum) >> (3*LOG2_NODES_PER_LEVEL))
#define LEVEL_2_INDEX(framenum) \
	(((framenum) >> (2*LOG2_NODES_PER_LEVEL)) & (NODES_PER_LEVEL - 1))
#define LEVEL_1_INDEX(framenum) \
	(((framenum) >> (1*LOG2_NODES_PER_LEVEL)) & (NODES_PER_LEVEL - 1))
#define LEAF_INDEX(framenum) \
	(((framenum) >> (0*LOG2_NODES_PER_LEVEL)) & (NODES_PER_LEVEL - 1))

frame_data_sequence *
new_frame_data_sequence(void)
{
	frame_data_sequence *fds;

	fds = g_malloc(sizeof *fds);
	fds->count = 0;
	fds->ptree_root = NULL;
	return fds;
}

/*
 * Add a new frame_data structure to a frame_data_sequence.
 */
frame_data *
frame_data_sequence_add(frame_data_sequence *fds, frame_data *fdata)
{
  frame_data *leaf;
  frame_data **level1;
  frame_data ***level2;
  frame_data ****level3;
  frame_data *node;

  /*
   * The current value of fds->count is the index value for the new frame,
   * because the index value for a frame is the frame number - 1, and
   * if we currently have fds->count frames, the the frame number of
   * the last frame in the collection is fds->count, so its index value
   * is fds->count - 1.
   */
  if (fds->count == 0) {
    /* The tree is empty; allocate the first leaf node, which will be
       the root node. */
    leaf = g_malloc((sizeof *leaf)*NODES_PER_LEVEL);
    node = &leaf[0];
    fds->ptree_root = leaf;
  } else if (fds->count < NODES_PER_LEVEL) {
    /* It's a 1-level tree, and is going to stay that way for now. */
    leaf = fds->ptree_root;
    node = &leaf[fds->count];
  } else if (fds->count == NODES_PER_LEVEL) {
    /* It's a 1-level tree that will turn into a 2-level tree. */
    level1 = g_malloc((sizeof *level1)*NODES_PER_LEVEL);
    memset(level1, 0, (sizeof *level1)*NODES_PER_LEVEL);
    level1[0] = fds->ptree_root;
    leaf = g_malloc((sizeof *leaf)*NODES_PER_LEVEL);
    level1[1] = leaf;
    node = &leaf[0];
    fds->ptree_root = level1;
  } else if (fds->count < NODES_PER_LEVEL*NODES_PER_LEVEL) {
    /* It's a 2-level tree, and is going to stay that way for now. */
    level1 = fds->ptree_root;
    leaf = level1[fds->count >> LOG2_NODES_PER_LEVEL];
    if (leaf == NULL) {
      leaf = g_malloc((sizeof *leaf)*NODES_PER_LEVEL);
      level1[fds->count >> LOG2_NODES_PER_LEVEL] = leaf;
    }
    node = &leaf[LEAF_INDEX(fds->count)];
  } else if (fds->count == NODES_PER_LEVEL*NODES_PER_LEVEL) {
    /* It's a 2-level tree that will turn into a 3-level tree */
    level2 = g_malloc((sizeof *level2)*NODES_PER_LEVEL);
    memset(level2, 0, (sizeof *level2)*NODES_PER_LEVEL);
    level2[0] = fds->ptree_root;
    level1 = g_malloc((sizeof *level1)*NODES_PER_LEVEL);
    memset(level1, 0, (sizeof *level1)*NODES_PER_LEVEL);
    level2[1] = level1;
    leaf = g_malloc((sizeof *leaf)*NODES_PER_LEVEL);
    level1[0] = leaf;
    node = &leaf[0];
    fds->ptree_root = level2;
  } else if (fds->count < NODES_PER_LEVEL*NODES_PER_LEVEL*NODES_PER_LEVEL) {
    /* It's a 3-level tree, and is going to stay that way for now. */
    level2 = fds->ptree_root;
    level1 = level2[fds->count >> (LOG2_NODES_PER_LEVEL+LOG2_NODES_PER_LEVEL)];
    if (level1 == NULL) {
      level1 = g_malloc((sizeof *level1)*NODES_PER_LEVEL);
      memset(level1, 0, (sizeof *level1)*NODES_PER_LEVEL);
      level2[fds->count >> (LOG2_NODES_PER_LEVEL+LOG2_NODES_PER_LEVEL)] = level1;
    }
    leaf = level1[LEVEL_1_INDEX(fds->count)];
    if (leaf == NULL) {
      leaf = g_malloc((sizeof *leaf)*NODES_PER_LEVEL);
      level1[LEVEL_1_INDEX(fds->count)] = leaf;
    }
    node = &leaf[LEAF_INDEX(fds->count)];
  } else if (fds->count == NODES_PER_LEVEL*NODES_PER_LEVEL*NODES_PER_LEVEL) {
    /* It's a 3-level tree that will turn into a 4-level tree */
    level3 = g_malloc((sizeof *level3)*NODES_PER_LEVEL);
    memset(level3, 0, (sizeof *level3)*NODES_PER_LEVEL);
    level3[0] = fds->ptree_root;
    level2 = g_malloc((sizeof *level2)*NODES_PER_LEVEL);
    memset(level2, 0, (sizeof *level2)*NODES_PER_LEVEL);
    level3[1] = level2;
    level1 = g_malloc((sizeof *level1)*NODES_PER_LEVEL);
    memset(level1, 0, (sizeof *level1)*NODES_PER_LEVEL);
    level2[0] = level1;
    leaf = g_malloc((sizeof *leaf)*NODES_PER_LEVEL);
    level1[0] = leaf;
    node = &leaf[0];
    fds->ptree_root = level3;
  } else {
    /* fds->count is 2^32-1 at most, and NODES_PER_LEVEL^4
       2^(LOG2_NODES_PER_LEVEL*4), and LOG2_NODES_PER_LEVEL is 10,
       so fds->count is always less < NODES_PER_LEVEL^4.

       XXX - we should fail if fds->count is 2^31-1, or should
       make the frame numbers 64-bit and just let users run
       themselves out of address space or swap space. :-) */
    /* It's a 4-level tree, and is going to stay that way forever. */
    level3 = fds->ptree_root;
    level2 = level3[LEVEL_3_INDEX(fds->count)];
    if (level2 == NULL) {
      level2 = g_malloc((sizeof *level2)*NODES_PER_LEVEL);
      memset(level2, 0, (sizeof *level2)*NODES_PER_LEVEL);
      level3[LEVEL_3_INDEX(fds->count)] = level2;
    }
    level1 = level2[LEVEL_2_INDEX(fds->count)];
    if (level1 == NULL) {
      level1 = g_malloc((sizeof *level1)*NODES_PER_LEVEL);
      memset(level1, 0, (sizeof *level1)*NODES_PER_LEVEL);
      level2[LEVEL_2_INDEX(fds->count)] = level1;
    }
    leaf = level1[LEVEL_1_INDEX(fds->count)];
    if (leaf == NULL) {
      leaf = g_malloc((sizeof *leaf)*NODES_PER_LEVEL);
      level1[LEVEL_1_INDEX(fds->count)] = leaf;
    }
    node = &leaf[LEAF_INDEX(fds->count)];
  }
  *node = *fdata;
  fds->count++;
  return node;
}

/*
 * Find the frame_data for the specified frame number.
 */
frame_data *
frame_data_sequence_find(frame_data_sequence *fds, guint32 num)
{
  frame_data *leaf;
  frame_data **level1;
  frame_data ***level2;
  frame_data ****level3;

  if (num == 0) {
    /* There is no frame number 0 */
    return NULL;
  }

  /* Convert it into an index number. */
  num--;
  if (num >= fds->count) {
    /* There aren't that many frames. */
    return NULL;
  }

  if (fds->count <= NODES_PER_LEVEL) {
    /* It's a 1-level tree. */
    leaf = fds->ptree_root;
    return &leaf[num];
  }
  if (fds->count <= NODES_PER_LEVEL*NODES_PER_LEVEL) {
    /* It's a 2-level tree. */
    level1 = fds->ptree_root;
    leaf = level1[num >> LOG2_NODES_PER_LEVEL];
    return &leaf[LEAF_INDEX(num)];
  }
  if (fds->count <= NODES_PER_LEVEL*NODES_PER_LEVEL*NODES_PER_LEVEL) {
    /* It's a 3-level tree. */
    level2 = fds->ptree_root;
    level1 = level2[num >> (LOG2_NODES_PER_LEVEL+LOG2_NODES_PER_LEVEL)];
    leaf = level1[(num >> LOG2_NODES_PER_LEVEL) & (NODES_PER_LEVEL - 1)];
    return &leaf[LEAF_INDEX(num)];
  }
  /* fds->count is 2^32-1 at most, and NODES_PER_LEVEL^4
     2^(LOG2_NODES_PER_LEVEL*4), and LOG2_NODES_PER_LEVEL is 10,
     so fds->count is always less < NODES_PER_LEVEL^4. */
  /* It's a 4-level tree, and is going to stay that way forever. */
  level3 = fds->ptree_root;
  level2 = level3[num >> (LOG2_NODES_PER_LEVEL+LOG2_NODES_PER_LEVEL+LOG2_NODES_PER_LEVEL)];
  level1 = level2[(num >> (LOG2_NODES_PER_LEVEL+LOG2_NODES_PER_LEVEL)) & (NODES_PER_LEVEL - 1)];
  leaf = level1[(num >> LOG2_NODES_PER_LEVEL) & (NODES_PER_LEVEL - 1)];
  return &leaf[LEAF_INDEX(num)];
}

/*
 * Free a frame_data_sequence and all the frame_data structures in it.
 */
void
free_frame_data_sequence(frame_data_sequence *fds)
{
  frame_data **level1;
  frame_data ***level2;
  frame_data ****level3;
  guint i, j, k;

  if (fds->count == 0) {
    /* Nothing to free. */
    return;
  }
  if (fds->count <= NODES_PER_LEVEL) {
    /* It's a 1-level tree. */
    g_free(fds->ptree_root);
  } else if (fds->count <= NODES_PER_LEVEL*NODES_PER_LEVEL) {
    /* It's a 2-level tree. */
    level1 = fds->ptree_root;
    for (i = 0; i < NODES_PER_LEVEL && level1[i] != NULL; i++)
      g_free(level1[i]);
    g_free(level1);
  } else if (fds->count <= NODES_PER_LEVEL*NODES_PER_LEVEL*NODES_PER_LEVEL) {
    /* It's a 3-level tree. */
    level2 = fds->ptree_root;
    for (i = 0; i < NODES_PER_LEVEL && level2[i] != NULL; i++) {
      level1 = level2[i];
281
      for (j = 0; j < NODES_PER_LEVEL && level1[j] != NULL; j++)
Mati's avatar
Mati committed
282 283 284 285 286 287 288 289 290 291 292 293 294
        g_free(level1[j]);
      g_free(level1);
    }
    g_free(level2);
    return;
  } else {
    /* fds->count is 2^32-1 at most, and NODES_PER_LEVEL^4
       2^(LOG2_NODES_PER_LEVEL*4), and LOG2_NODES_PER_LEVEL is 10,
       so fds->count is always less < NODES_PER_LEVEL^4. */
    /* It's a 4-level tree, and is going to stay that way forever. */
    level3 = fds->ptree_root;
    for (i = 0; i < NODES_PER_LEVEL && level3[i] != NULL; i++) {
      level2 = level3[i];
295
      for (j = 0; j < NODES_PER_LEVEL && level2[j] != NULL; j++) {
Mati's avatar
Mati committed
296 297 298 299 300 301 302 303 304 305
        level1 = level2[j];
        for (k = 0; k < NODES_PER_LEVEL && level1[k] != NULL; k++)
          g_free(level1[k]);
      }
      g_free(level2);
    }
    g_free(level3);
  }
  g_free(fds);
}