milenage.c 7.09 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
/*-------------------------------------------------------------------
 *          Example algorithms f1, f1*, f2, f3, f4, f5, f5*
 *-------------------------------------------------------------------
 *
 *  A sample implementation of the example 3GPP authentication and
 *  key agreement functions f1, f1*, f2, f3, f4, f5 and f5*.  This is
 *  a byte-oriented implementation of the functions, and of the block
 *  cipher kernel function Rijndael.
 *
 *  This has been coded for clarity, not necessarily for efficiency.
 *
 *  The functions f2, f3, f4 and f5 share the same inputs and have
 *  been coded together as a single function.  f1, f1* and f5* are
 *  all coded separately.
 *
 *-----------------------------------------------------------------*/

#include "milenage.h"
#include "rijndael.h"

/*--------------------------- prototypes --------------------------*/



/*-------------------------------------------------------------------
 *                            Algorithm f1
 *-------------------------------------------------------------------
 *
 *  Computes network authentication code MAC-A from key K, random
 *  challenge RAND, sequence number SQN and authentication management
 *  field AMF.
 *
 *-----------------------------------------------------------------*/

void f1    ( u8 k[16], u8 rand[16], u8 sqn[6], u8 amf[2], 
             u8 mac_a[8], u8 op[16] )
{
  u8 op_c[16];
  u8 temp[16];
  u8 in1[16];
  u8 out1[16];
  u8 rijndaelInput[16];
  u8 i;

  RijndaelKeySchedule( k );

  ComputeOPc( op_c, op );

  for (i=0; i<16; i++)
    rijndaelInput[i] = rand[i] ^ op_c[i];
  RijndaelEncrypt( rijndaelInput, temp );

  for (i=0; i<6; i++)
  {
    in1[i]    = sqn[i];
    in1[i+8]  = sqn[i];
  }
  for (i=0; i<2; i++)
  {
    in1[i+6]  = amf[i];
    in1[i+14] = amf[i];
  }

  /* XOR op_c and in1, rotate by r1=64, and XOR *
   * on the constant c1 (which is all zeroes)   */

  for (i=0; i<16; i++)
    rijndaelInput[(i+8) % 16] = in1[i] ^ op_c[i];

  /* XOR on the value temp computed before */

  for (i=0; i<16; i++)
    rijndaelInput[i] ^= temp[i];
  
  RijndaelEncrypt( rijndaelInput, out1 );
  for (i=0; i<16; i++)
    out1[i] ^= op_c[i];

  for (i=0; i<8; i++)
    mac_a[i] = out1[i];

  return;
} /* end of function f1 */


  
/*-------------------------------------------------------------------
 *                            Algorithms f2-f5
 *-------------------------------------------------------------------
 *
 *  Takes key K and random challenge RAND, and returns response RES,
 *  confidentiality key CK, integrity key IK and anonymity key AK.
 *
 *-----------------------------------------------------------------*/

void f2345 ( u8 k[16], u8 rand[16],
             u8 res[8], u8 ck[16], u8 ik[16], u8 ak[6], u8 op[16] )
{
  u8 op_c[16];
  u8 temp[16];
  u8 out[16];
  u8 rijndaelInput[16];
  u8 i;

  RijndaelKeySchedule( k );

  ComputeOPc( op_c, op );

  for (i=0; i<16; i++)
    rijndaelInput[i] = rand[i] ^ op_c[i];
  RijndaelEncrypt( rijndaelInput, temp );

  /* To obtain output block OUT2: XOR OPc and TEMP,    *
   * rotate by r2=0, and XOR on the constant c2 (which *
   * is all zeroes except that the last bit is 1).     */

  for (i=0; i<16; i++)
    rijndaelInput[i] = temp[i] ^ op_c[i];
  rijndaelInput[15] ^= 1;

  RijndaelEncrypt( rijndaelInput, out );
  for (i=0; i<16; i++)
    out[i] ^= op_c[i];

  for (i=0; i<8; i++)
    res[i] = out[i+8];
  for (i=0; i<6; i++)
    ak[i]  = out[i];

  /* To obtain output block OUT3: XOR OPc and TEMP,        *
   * rotate by r3=32, and XOR on the constant c3 (which    *
   * is all zeroes except that the next to last bit is 1). */

  for (i=0; i<16; i++)
    rijndaelInput[(i+12) % 16] = temp[i] ^ op_c[i];
  rijndaelInput[15] ^= 2;

  RijndaelEncrypt( rijndaelInput, out );
  for (i=0; i<16; i++)
    out[i] ^= op_c[i];

  for (i=0; i<16; i++)
    ck[i] = out[i];

  /* To obtain output block OUT4: XOR OPc and TEMP,         *
   * rotate by r4=64, and XOR on the constant c4 (which     *
   * is all zeroes except that the 2nd from last bit is 1). */

  for (i=0; i<16; i++)
    rijndaelInput[(i+8) % 16] = temp[i] ^ op_c[i];
  rijndaelInput[15] ^= 4;

  RijndaelEncrypt( rijndaelInput, out );
  for (i=0; i<16; i++)
    out[i] ^= op_c[i];

  for (i=0; i<16; i++)
    ik[i] = out[i];

  return;
} /* end of function f2345 */

  
/*-------------------------------------------------------------------
 *                            Algorithm f1*
 *-------------------------------------------------------------------
 *
 *  Computes resynch authentication code MAC-S from key K, random
 *  challenge RAND, sequence number SQN and authentication management
 *  field AMF.
 *
 *-----------------------------------------------------------------*/

void f1star( u8 k[16], u8 rand[16], u8 sqn[6], u8 amf[2], 
             u8 mac_s[8], u8 op[16] )
{
  u8 op_c[16];
  u8 temp[16];
  u8 in1[16];
  u8 out1[16];
  u8 rijndaelInput[16];
  u8 i;

  RijndaelKeySchedule( k );

  ComputeOPc( op_c, op );

  for (i=0; i<16; i++)
    rijndaelInput[i] = rand[i] ^ op_c[i];
  RijndaelEncrypt( rijndaelInput, temp );

  for (i=0; i<6; i++)
  {
    in1[i]    = sqn[i];
    in1[i+8]  = sqn[i];
  }
  for (i=0; i<2; i++)
  {
    in1[i+6]  = amf[i];
    in1[i+14] = amf[i];
  }

  /* XOR op_c and in1, rotate by r1=64, and XOR *
   * on the constant c1 (which is all zeroes)   */

  for (i=0; i<16; i++)
    rijndaelInput[(i+8) % 16] = in1[i] ^ op_c[i];

  /* XOR on the value temp computed before */

  for (i=0; i<16; i++)
    rijndaelInput[i] ^= temp[i];
  
  RijndaelEncrypt( rijndaelInput, out1 );
  for (i=0; i<16; i++)
    out1[i] ^= op_c[i];

  for (i=0; i<8; i++)
    mac_s[i] = out1[i+8];

  return;
} /* end of function f1star */

  
/*-------------------------------------------------------------------
 *                            Algorithm f5*
 *-------------------------------------------------------------------
 *
 *  Takes key K and random challenge RAND, and returns resynch
 *  anonymity key AK.
 *
 *-----------------------------------------------------------------*/

void f5star( u8 k[16], u8 rand[16],
             u8 ak[6], u8 op[16] )
{
  u8 op_c[16];
  u8 temp[16];
  u8 out[16];
  u8 rijndaelInput[16];
  u8 i;

  RijndaelKeySchedule( k );

  ComputeOPc( op_c, op );

  for (i=0; i<16; i++)
    rijndaelInput[i] = rand[i] ^ op_c[i];
  RijndaelEncrypt( rijndaelInput, temp );

  /* To obtain output block OUT5: XOR OPc and TEMP,         *
   * rotate by r5=96, and XOR on the constant c5 (which     *
   * is all zeroes except that the 3rd from last bit is 1). */

  for (i=0; i<16; i++)
    rijndaelInput[(i+4) % 16] = temp[i] ^ op_c[i];
  rijndaelInput[15] ^= 8;

  RijndaelEncrypt( rijndaelInput, out );
  for (i=0; i<16; i++)
    out[i] ^= op_c[i];

  for (i=0; i<6; i++)
    ak[i] = out[i];

  return;
} /* end of function f5star */

  
/*-------------------------------------------------------------------
 *  Function to compute OPc from OP and K.  Assumes key schedule has
    already been performed.
 *-----------------------------------------------------------------*/

void ComputeOPc( u8 op_c[16], u8 op[16] )
{
  u8 i;
  
  RijndaelEncrypt( op, op_c );
  for (i=0; i<16; i++)
    op_c[i] ^= op[i];

  return;
} /* end of function ComputeOPc */