### edits for vs2

parent 56301810
This diff is collapsed.
 ... ... @@ -5577,7 +5577,7 @@ \end{ans} \subsection{Subsection Two.II.1: Definition and Examples} \begin{ans}{Two.II.1.18} \begin{ans}{Two.II.1.19} For each of these, when the subset is independent it must be proved, and when the subset is dependent an example of a dependence must be given. \begin{exparts} ... ... @@ -5682,7 +5682,7 @@ \end{exparts} \end{ans} \begin{ans}{Two.II.1.19} \begin{ans}{Two.II.1.20} In the cases of independence, that must be proved. Otherwise, a specific dependence must be produced. (Of course, dependences other than the ones exhibited here are possible.) ... ... @@ -5749,7 +5749,7 @@ \end{exparts} \end{ans} \begin{ans}{Two.II.1.20} \begin{ans}{Two.II.1.21} Let $Z$ be the zero function $Z(x)=0$, which is the additive identity in the vector space under discussion. \begin{exparts} ... ... @@ -5786,7 +5786,7 @@ \end{exparts} \end{ans} \begin{ans}{Two.II.1.21} \begin{ans}{Two.II.1.22} In each case, that the set is independent must be proved, and that it is dependent must be shown by exihibiting a specific dependence. \begin{exparts} ... ... @@ -5831,25 +5831,25 @@ \end{exparts} \end{ans} \begin{ans}{Two.II.1.22} \begin{ans}{Two.II.1.23} No, that equation is not a linear relationship. In fact this set is independent, as the system arising from taking $$x$$ to be $$0$$, $$\pi/6$$ and $$\pi/4$$ shows. \end{ans} \begin{ans}{Two.II.1.23} \begin{ans}{Two.II.1.24} To emphasize that the equation $$1\cdot\vec{s}+(-1)\cdot\vec{s}=\zero$$ does not make the set dependent. \end{ans} \begin{ans}{Two.II.1.24} \begin{ans}{Two.II.1.25} We have already showed this: the Linear Combination Lemma and its corollary state that in an echelon form matrix, no nonzero row is a linear combination of the others. \end{ans} \begin{ans}{Two.II.1.25} \begin{ans}{Two.II.1.26} \begin{exparts} \partsitem Assume that the set $$\set{\vec{u},\vec{v},\vec{w}}$$ is linearly ... ... @@ -5884,7 +5884,7 @@ \end{exparts} \end{ans} \begin{ans}{Two.II.1.26} \begin{ans}{Two.II.1.27} \begin{exparts} \partsitem A singleton set $\set{\vec{v}}$ is linearly independent if and only if $\vec{v}\neq\zero$. ... ... @@ -5917,11 +5917,11 @@ \end{exparts} \end{ans} \begin{ans}{Two.II.1.27} \begin{ans}{Two.II.1.28} This set is linearly dependent set because it contains the zero vector. \end{ans} \begin{ans}{Two.II.1.28} \begin{ans}{Two.II.1.29} The if' half is given by \nearbylemma{le:SubsetPreserveLI}. The converse (the only if' statement) does not hold. An example is to consider the vector space $$\Re^2$$ and ... ... @@ -5933,7 +5933,7 @@ \end{equation*} \end{ans} \begin{ans}{Two.II.1.29} \begin{ans}{Two.II.1.30} \begin{exparts} \partsitem The linear system arising from \begin{equation*} ... ... @@ -6005,7 +6005,7 @@ \end{exparts} \end{ans} \begin{ans}{Two.II.1.30} \begin{ans}{Two.II.1.31} In this if and only if' statement, the if' half is clear\Dash if the polynomial is the zero polynomial then the function that arises from the action of the polynomial must be the zero ... ... @@ -6018,13 +6018,13 @@ polynomial. \end{ans} \begin{ans}{Two.II.1.31} \begin{ans}{Two.II.1.32} The work in this section suggests that an $$n$$-dimensional non-degenerate linear surface should be defined as the span of a linearly independent set of $$n$$ vectors. \end{ans} \begin{ans}{Two.II.1.32} \begin{ans}{Two.II.1.33} \begin{exparts} \partsitem For any $a_{1,1}$, \ldots, $a_{2,4}$, \begin{equation*} ... ... @@ -6063,7 +6063,7 @@ \end{exparts} \end{ans} \begin{ans}{Two.II.1.33} \begin{ans}{Two.II.1.34} Yes; here is one. \begin{equation*} \set{\colvec{1 \\ 0 \\ 0}, ... ... @@ -6073,13 +6073,13 @@ \end{equation*} \end{ans} \begin{ans}{Two.II.1.34} \begin{ans}{Two.II.1.35} Yes. The two improper subsets, the entire set and the empty subset, serve as examples. \end{ans} \begin{ans}{Two.II.1.35} \begin{ans}{Two.II.1.36} In $$\Re^4$$ the biggest linearly independent set has four vectors. There are many examples of such sets, this is one. ... ... @@ -6123,7 +6123,7 @@ The smallest is $$\set{\zero}$$. \end{ans} \begin{ans}{Two.II.1.36} \begin{ans}{Two.II.1.37} \begin{exparts} \partsitem The intersection of two linearly independent sets $S\intersection T$ must be linearly ... ... @@ -6154,7 +6154,7 @@ \end{exparts} \end{ans} \begin{ans}{Two.II.1.37} \begin{ans}{Two.II.1.38} \begin{exparts} \partsitem \nearbylemma{le:LDIffANonTrivLinRel} requires that the vectors ... ... @@ -6226,7 +6226,7 @@ \end{exparts} \end{ans} \begin{ans}{Two.II.1.38} \begin{ans}{Two.II.1.39} \begin{exparts} \partsitem We do induction on the number of vectors in the finite set $$S$$. ... ... @@ -6282,7 +6282,7 @@ \end{exparts} \end{ans} \begin{ans}{Two.II.1.39} \begin{ans}{Two.II.1.40} \begin{exparts} \partsitem Assuming first that $$a\neq 0$$, ... ... @@ -6429,7 +6429,7 @@ \end{exparts} \end{ans} \begin{ans}{Two.II.1.40} \begin{ans}{Two.II.1.41} Recall that two vectors from $$\Re^n$$ are perpendicular if and only if their dot product is zero. \begin{exparts} ... ... @@ -6456,7 +6456,7 @@ \end{exparts} \end{ans} \begin{ans}{Two.II.1.41} \begin{ans}{Two.II.1.42} \begin{exparts} \partsitem This check is routine. \partsitem The summation is infinite (has infinitely many summands). ... ... @@ -6473,7 +6473,7 @@ \end{exparts} \end{ans} \begin{ans}{Two.II.1.42} \begin{ans}{Two.II.1.43} It is both if' and only if'. Let $$T$$ be a subset of the subspace $$S$$ of the vector space
This diff is collapsed.
 ... ... @@ -2037,9 +2037,9 @@ type of subspaces, so in fact this picture shows them all. \put(45,0){\makebox(0,0){\tiny$$\set{\colvec[r]{0 \\ 0 \\ 0} }$$} } \end{picture} \end{center} They are described as spans of sets with a minimal number of members, The subspaces are described as spans of sets with a minimal number of members and are shown connected to their supersets. Note that these subspaces fall naturally into levels\Dash planes on one level, Note that the subspaces fall naturally into levels\Dash planes on one level, lines on another, etc.\Dash according to how many vectors are in a minimal-sized spanning set. ... ...
This diff is collapsed.
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!