1. 28 May, 2021 2 commits
  2. 06 Apr, 2021 2 commits
  3. 13 Feb, 2021 2 commits
  4. 16 Dec, 2020 3 commits
  5. 16 Oct, 2020 1 commit
  6. 04 Oct, 2020 2 commits
  7. 03 Oct, 2020 1 commit
  8. 02 Oct, 2020 3 commits
  9. 01 Oct, 2020 3 commits
  10. 25 Jul, 2020 1 commit
  11. 29 Jun, 2020 1 commit
  12. 27 Jun, 2020 1 commit
  13. 26 Jun, 2020 3 commits
  14. 21 Jun, 2020 1 commit
    • Dan Baston's avatar
      Randomly generate anomalies outside forecast period · 5c27dd34
      Dan Baston authored
      This provides less bias than assuming zero anomalies for any forecast
      (which may provide an optimistic yield prediction.)
      
      Roughly doubles the runtime of wsim_ag. Maybe it could be optimized by
      generating the random numbers in C++ (R::rnorm) instead of calling back
      to R.
      5c27dd34
  15. 20 Jun, 2020 1 commit
  16. 19 Jun, 2020 1 commit
  17. 14 Jun, 2020 3 commits
  18. 13 Jun, 2020 3 commits
  19. 12 Jun, 2020 4 commits
  20. 10 Jun, 2020 2 commits