Commit fbc15718 authored by Tim Allen's avatar Tim Allen

Update to v106r85 release.

byuu says:

The bad instruction was due to the instruction before it fetching one
too many bytes. Didn't notice right away as the disassembler got it
right.

The register map was incorrect on the active 16-bit flags.

I fixed and improved some other things along those lines. Hooked up some
basic KnGE (VPU) timings, made it print out VRAM and some of the WRAM
onto the screen each frame, tried to drive Vblank and Hblank IRQs, but
... I don't know for sure what vector addresses they belong to.

MAME says "INT4" for Vblank, and says nothing for Hblank. I am wildly
guessing INT4==SWI 4==0xffff10, but ... I have no idea. I'm also not
emulating the interrupts properly based on line levels, I'm just firing
on the 0→1 transitions. Sounds like Vblank is more nuanced too, but I
guess we'll see.

Emulation is running further along now, even to the point of it
successfully enabling the KnGE IRQs, but VRAM doesn't appear to get much
useful stuff written into it yet.

I reverted the nall/primitive changes, so request for testing is I guess
rescinded, for whatever it was worth.
parent 53843934
Pipeline #44234445 passed with stage
in 14 minutes and 19 seconds
......@@ -31,7 +31,7 @@ using namespace nall;
namespace Emulator {
static const string Name = "higan";
static const string Version = "106.84";
static const string Version = "106.85";
static const string Author = "byuu";
static const string License = "GPLv3";
static const string Website = "https://byuu.org/";
......
......@@ -24,7 +24,6 @@ struct Interface {
uint internalWidth = 0;
uint internalHeight = 0;
double aspectCorrection = 0;
double refreshRate = 0;
};
struct Port {
......
......@@ -22,7 +22,6 @@ auto Interface::display() -> Display {
display.internalWidth = 256;
display.internalHeight = 240;
display.aspectCorrection = 8.0 / 7.0;
display.refreshRate = system.frequency() / (ppu.vlines() * ppu.rate() * 341.0);
return display;
}
......
......@@ -16,7 +16,6 @@ auto Interface::display() -> Display {
display.internalWidth = 160;
display.internalHeight = 144;
display.aspectCorrection = 1.0;
display.refreshRate = (4.0 * 1024.0 * 1024.0) / (154.0 * 456.0);
return display;
}
......
......@@ -21,7 +21,6 @@ auto Interface::display() -> Display {
display.internalWidth = 240;
display.internalHeight = 160;
display.aspectCorrection = 1.0;
display.refreshRate = system.frequency() / (228.0 * 1232.0);
if(settings.rotateLeft) {
swap(display.width, display.height);
swap(display.internalWidth, display.internalHeight);
......
......@@ -22,7 +22,6 @@ auto Interface::display() -> Display {
display.internalWidth = 1280;
display.internalHeight = 480;
display.aspectCorrection = 1.0;
display.refreshRate = (system.frequency() / 2.0) / (vdp.frameHeight() * 1710.0);
return display;
}
......
......@@ -15,8 +15,6 @@ auto ColecoVisionInterface::display() -> Display {
display.internalWidth = 256;
display.internalHeight = 192;
display.aspectCorrection = 1.0;
if(Region::NTSC()) display.refreshRate = (system.colorburst() * 15.0 / 5.0) / (262.0 * 684.0);
if(Region::PAL()) display.refreshRate = (system.colorburst() * 15.0 / 5.0) / (312.0 * 684.0);
return display;
}
......
......@@ -15,7 +15,6 @@ auto GameGearInterface::display() -> Display {
display.internalWidth = 160;
display.internalHeight = 144;
display.aspectCorrection = 1.0;
display.refreshRate = (system.colorburst() * 15.0 / 5.0) / (262.0 * 684.0);
return display;
}
......
......@@ -15,8 +15,6 @@ auto MasterSystemInterface::display() -> Display {
display.internalWidth = 256;
display.internalHeight = 240;
display.aspectCorrection = 8.0 / 7.0;
if(Region::NTSC()) display.refreshRate = (system.colorburst() * 15.0 / 5.0) / (262.0 * 684.0);
if(Region::PAL()) display.refreshRate = (system.colorburst() * 15.0 / 5.0) / (312.0 * 684.0);
return display;
}
......
......@@ -15,8 +15,6 @@ auto SC3000Interface::display() -> Display {
display.internalWidth = 256;
display.internalHeight = 192;
display.aspectCorrection = 1.0;
if(Region::NTSC()) display.refreshRate = (system.colorburst() * 15.0 / 5.0) / (262.0 * 684.0);
if(Region::PAL()) display.refreshRate = (system.colorburst() * 15.0 / 5.0) / (312.0 * 684.0);
return display;
}
......
......@@ -15,8 +15,6 @@ auto SG1000Interface::display() -> Display {
display.internalWidth = 256;
display.internalHeight = 192;
display.aspectCorrection = 1.0;
if(Region::NTSC()) display.refreshRate = (system.colorburst() * 15.0 / 5.0) / (262.0 * 684.0);
if(Region::PAL()) display.refreshRate = (system.colorburst() * 15.0 / 5.0) / (312.0 * 684.0);
return display;
}
......
......@@ -19,7 +19,6 @@ auto Interface::display() -> Display {
display.internalWidth = 256;
display.internalHeight = 192;
display.aspectCorrection = 1.0;
display.refreshRate = 60.0; //todo: PAL
return display;
}
......
......@@ -12,8 +12,7 @@ auto CPU::Enter() -> void {
auto CPU::main() -> void {
static uint ctr=0;
if(++ctr < 200) print(disassemble(), "\n");
else return step(1);
if(++ctr<200) print(disassemble(), "\n");
instruction();
step(1);
}
......@@ -30,6 +29,17 @@ auto CPU::power() -> void {
create(CPU::Enter, system.frequency());
ram.allocate(0x3000);
r.pc.l.l0 = 0xff1800;
io = {};
}
auto CPU::setInterruptHblank(boolean line) -> void {
io.irq.hblank = line;
//if(line) interrupt(0xffff0c);
}
auto CPU::setInterruptVblank(boolean line) -> void {
io.irq.vblank = line;
if(line) interrupt(0xffff10);
}
}
......@@ -7,12 +7,23 @@ struct CPU : Processor::TLCS900H, Thread {
auto step(uint clocks) -> void override;
auto power() -> void;
auto setInterruptHblank(boolean line) -> void;
auto setInterruptVblank(boolean line) -> void;
//memory.cpp
auto read(uint24 address) -> uint8 override;
auto write(uint24 address, uint8 data) -> void override;
//serialization.cpp
auto serialize(serializer&) -> void;
private:
struct IO {
struct IRQ {
boolean hblank;
boolean vblank;
} irq;
} io;
};
extern CPU cpu;
......@@ -15,7 +15,6 @@ auto Interface::display() -> Display {
display.internalWidth = 160;
display.internalHeight = 152;
display.aspectCorrection = 1.0;
display.refreshRate = 60.0;
return display;
}
......
......@@ -10,8 +10,34 @@ auto VPU::Enter() -> void {
}
auto VPU::main() -> void {
step(system.frequency() / 60.0);
scheduler.exit(Scheduler::Event::Frame);
cpu.setInterruptHblank(0);
for(uint hclock : range(480)) {
io.hcounter++;
step(1);
}
if(io.vcounter <= 150) {
if(ram[0x0000].bit(6)) cpu.setInterruptHblank(1);
}
for(uint hclock : range(35)) {
io.hcounter++;
step(1);
}
cpu.setInterruptHblank(0);
io.hcounter = 0;
io.vcounter++;
if(io.vcounter == 152) {
ram[0x0010].bit(6) = 1;
if(ram[0x0000].bit(7)) cpu.setInterruptVblank(1);
scheduler.exit(Scheduler::Event::Frame);
}
if(io.vcounter == 198) {
if(ram[0x0000].bit(6)) cpu.setInterruptHblank(1);
}
if(io.vcounter == 199) {
ram[0x0010].bit(6) = 0;
cpu.setInterruptVblank(0);
io.vcounter = 0;
}
}
auto VPU::step(uint clocks) -> void {
......@@ -20,12 +46,15 @@ auto VPU::step(uint clocks) -> void {
}
auto VPU::refresh() -> void {
for(uint address : range(0x4000)) buffer[address] = ram[address];
for(uint address : range(0x1f00)) buffer[address + 0x4000] = cpu.ram[address + 0x3000 - 0x1f00];
Emulator::video.refresh(buffer, 160 * sizeof(uint32), 160, 152);
}
auto VPU::power() -> void {
create(VPU::Enter, system.frequency());
ram.allocate(0x4000);
io = {};
}
}
......@@ -16,6 +16,11 @@ struct VPU : Thread {
private:
uint32 buffer[160 * 152];
struct IO {
uint8 vcounter;
uint10 hcounter;
} io;
};
extern VPU vpu;
......@@ -16,7 +16,6 @@ auto Interface::display() -> Display {
display.internalWidth = 1120;
display.internalHeight = 240;
display.aspectCorrection = 8.0 / 7.0;
display.refreshRate = (system.colorburst() * 6.0) / (262.0 * 1365.0);
return display;
}
......
......@@ -98,10 +98,10 @@ auto TLCS900H::disassemble() -> string {
#define opSize opSizes[fetch.bits(4,5)] //extract the size from the opcode fetch
switch(auto fetch = read8()) {
case 0x00: name = "nop"; break;
case 0x01: break;
case 0x01: break; //"normal" (not present on 900/H)
case 0x02: name = "push"; lhs.text("sr"); break;
case 0x03: name = "pop"; lhs.text("sr"); break;
case 0x04: break;
case 0x04: break; //"max" or "min" (not present on 900/H)
case 0x05: name = "halt"; break;
case 0x06: name = "ei"; lhs.immediate(3, (uint3)read8()); if(lhs.immediate() == 7) name = "di", lhs.null(); break;
case 0x07: name = "reti"; break;
......
......@@ -17,7 +17,7 @@ template<typename T> auto TLCS900H::toRegister8(uint8 code) const -> Register<T>
template<typename T> auto TLCS900H::toControlRegister(uint8 code) const -> ControlRegister<T> { return {code}; }
template<typename T> auto TLCS900H::toMemory(uint32 address) const -> Memory<T> { return {address}; }
template<typename T> auto TLCS900H::toImmediate(uint32 constant) const -> Immediate<T> { return {constant}; }
template<typename T> auto TLCS900H::toImmediate3(natural constant) const -> Immediate<T> { return {constant.clip(3).orElse(8)}; }
template<typename T> auto TLCS900H::toImmediate3(natural constant) const -> Immediate<T> { return {constant.clip(3) ? constant.clip(3) : 8}; }
//note: much of this code is split to multiple statements due to C++ not guaranteeing
//the order of evaluations of function arguments. fetch() ordering is critical.
......@@ -27,16 +27,16 @@ auto TLCS900H::instruction() -> void {
switch(r.prefix = data) {
case 0x00: return instructionNoOperation();
case 0x01: return (void)Undefined;
case 0x01: return (void)Undefined; //NORMAL (not present on 900/H)
case 0x02: return instructionPush(SR);
case 0x03: return instructionPop(SR);
case 0x04: return (void)Undefined;
case 0x04: return (void)Undefined; //MAX or MIN (not present on 900/H)
case 0x05: return instructionHalt();
case 0x06: return instructionSetInterruptFlipFlop((uint3)fetch());
case 0x07: return instructionReturnInterrupt();
case 0x08: {
auto memory = fetchMemory<uint8, uint8>();
return instructionLoad(memory, fetchImmediate<uint16>()); }
return instructionLoad(memory, fetchImmediate<uint8>()); }
case 0x09: return instructionPush(fetchImmediate<uint8>());
case 0x0a: {
auto memory = fetchMemory<uint16, uint8>();
......
......@@ -351,7 +351,8 @@ auto TLCS900H::instructionRotateLeftDigit(LHS lhs, RHS rhs) -> void {
template<typename Target, typename Amount>
auto TLCS900H::instructionRotateLeft(Target target, Amount amount) -> void {
auto result = load(target);
for(uint n : range(load(amount).clip(4).orElse(16))) {
auto length = load(amount).clip(4);
for(uint n : range(length ? length : 16)) {
uint cf = result.bit(-1);
result = result << 1 | CF;
CF = cf;
......@@ -362,7 +363,8 @@ auto TLCS900H::instructionRotateLeft(Target target, Amount amount) -> void {
template<typename Target, typename Amount>
auto TLCS900H::instructionRotateLeftWithoutCarry(Target target, Amount amount) -> void {
auto result = load(target);
for(uint n : range(load(amount).clip(4).orElse(16))) {
auto length = load(amount).clip(4);
for(uint n : range(length ? length : 16)) {
CF = result.bit(-1);
result = result << 1 | CF;
}
......@@ -389,7 +391,8 @@ auto TLCS900H::instructionRotateRightDigit(LHS lhs, RHS rhs) -> void {
template<typename Target, typename Amount>
auto TLCS900H::instructionRotateRight(Target target, Amount amount) -> void {
auto result = load(target);
for(uint n : range(load(amount).clip(4).orElse(16))) {
auto length = load(amount).clip(4);
for(uint n : range(length ? length : 16)) {
uint cf = result.bit(0);
result = CF << Target::bits - 1 | result >> 1;
CF = cf;
......@@ -400,7 +403,8 @@ auto TLCS900H::instructionRotateRight(Target target, Amount amount) -> void {
template<typename Target, typename Amount>
auto TLCS900H::instructionRotateRightWithoutCarry(Target target, Amount amount) -> void {
auto result = load(target);
for(uint n : range(load(amount).clip(4).orElse(16))) {
auto length = load(amount).clip(4);
for(uint n : range(length ? length : 16)) {
CF = result.bit(0);
result = CF << Target::bits - 1 | result >> 1;
}
......@@ -434,7 +438,8 @@ auto TLCS900H::instructionSetRegisterFilePointer(uint2 value) -> void {
template<typename Target, typename Amount>
auto TLCS900H::instructionShiftLeftArithmetic(Target target, Amount amount) -> void {
auto result = load(target);
for(uint n : range(load(amount).clip(4).orElse(16))) {
auto length = load(amount).clip(4);
for(uint n : range(length ? length : 16)) {
CF = result.bit(-1);
result = result << 1;
}
......@@ -444,7 +449,8 @@ auto TLCS900H::instructionShiftLeftArithmetic(Target target, Amount amount) -> v
template<typename Target, typename Amount>
auto TLCS900H::instructionShiftLeftLogical(Target target, Amount amount) -> void {
auto result = load(target);
for(uint n : range(load(amount).clip(4).orElse(16))) {
auto length = load(amount).clip(4);
for(uint n : range(length ? length : 16)) {
CF = result.bit(-1);
result = result << 1;
}
......@@ -454,7 +460,8 @@ auto TLCS900H::instructionShiftLeftLogical(Target target, Amount amount) -> void
template<typename Target, typename Amount>
auto TLCS900H::instructionShiftRightArithmetic(Target target, Amount amount) -> void {
auto result = load(target);
for(uint n : range(load(amount).clip(4).orElse(16))) {
auto length = load(amount).clip(4);
for(uint n : range(length ? length : 16)) {
CF = result.bit(0);
result = result >> 1;
result.bit(-1) = result.bit(-2);
......@@ -465,7 +472,8 @@ auto TLCS900H::instructionShiftRightArithmetic(Target target, Amount amount) ->
template<typename Target, typename Amount>
auto TLCS900H::instructionShiftRightLogical(Target target, Amount amount) -> void {
auto result = load(target);
for(uint n : range(load(amount).clip(4).orElse(16))) {
auto length = load(amount).clip(4);
for(uint n : range(length ? length : 16)) {
CF = result.bit(0);
result = result >> 1;
}
......
......@@ -50,8 +50,8 @@ template<> auto TLCS900H::map(Register<uint16> register) const -> maybe<uint16&>
r(0x38, xde[3].w.w0) r(0x3a, xde[3].w.w1) r(0x3c, xhl[3].w.w0) r(0x3e, xhl[3].w.w1)
r(0xd0, xwa[p].w.w0) r(0xd2, xwa[p].w.w1) r(0xd4, xbc[p].w.w0) r(0xd6, xbc[p].w.w1)
r(0xd8, xde[p].w.w0) r(0xda, xde[p].w.w1) r(0xdc, xhl[p].w.w0) r(0xde, xhl[p].w.w1)
r(0xe0, xwa[p].w.w0) r(0xe2, xwa[p].w.w1) r(0xe4, xbc[p].w.w0) r(0xe6, xbc[p].w.w1)
r(0xe8, xde[p].w.w0) r(0xea, xde[p].w.w1) r(0xec, xhl[p].w.w0) r(0xee, xhl[p].w.w1)
r(0xe0, xwa[a].w.w0) r(0xe2, xwa[a].w.w1) r(0xe4, xbc[a].w.w0) r(0xe6, xbc[a].w.w1)
r(0xe8, xde[a].w.w0) r(0xea, xde[a].w.w1) r(0xec, xhl[a].w.w0) r(0xee, xhl[a].w.w1)
r(0xf0, xix .w.w0) r(0xf2, xix .w.w1) r(0xf4, xiy .w.w0) r(0xf6, xiy .w.w1)
r(0xf8, xiz .w.w0) r(0xfa, xiz .w.w1) r(0xfc, xsp .w.w0) r(0xfe, xsp .w.w0)
#undef r
......@@ -106,12 +106,13 @@ auto TLCS900H::store(FlagRegister f, uint8 data) -> void {
}
auto TLCS900H::load(StatusRegister) const -> uint16 {
return load(F) | r.rfp << 8 | 1 << 11 | r.iff << 12 | 1 << 15;
//900/H: d10 = RFP2 (always 0); d11 = MAX (always 1); d15 = SYSM (always 1)
return load(F) | r.rfp << 8 | 0 << 10 | 1 << 11 | r.iff << 12 | 1 << 15;
}
auto TLCS900H::store(StatusRegister, uint16 data) -> void {
store(F, data);
r.rfp = data.bits( 8, 9);
store(F, data.bits(0,7));
r.rfp = data.bits(8,9);
r.iff = data.bits(12,14);
}
......
......@@ -33,6 +33,7 @@ auto TLCS900H::interrupt(uint24 address) -> void {
auto TLCS900H::power() -> void {
r = {};
r.xsp.l.l0 = 0x100;
}
}
......@@ -191,14 +191,14 @@ struct TLCS900H {
DataRegister dmam[4];
DataRegister intnest; //16-bit
uint1 c, cp; //carry
uint1 n, np; //negative
uint1 v, vp; //overflow or parity
uint1 h, hp; //half carry
uint1 z, zp; //zero
uint1 s, sp; //sign
uint2 rfp; //register file pointer
uint3 iff = 7; //interrupt mask flip-flop
uint1 c, cp; //carry
uint1 n, np; //negative
uint1 v, vp; //overflow or parity
uint1 h, hp; //half carry
uint1 z, zp; //zero
uint1 s, sp; //sign
uint2 rfp; //register file pointer
uint3 iff = 7; //interrupt mask flip-flop
uint1 halted; //set if halt instruction executed; waits for an interrupt to resume
uint8 prefix; //first opcode byte; needed for [CP|LD][ID](R) instructions
......
......@@ -23,8 +23,6 @@ auto Interface::display() -> Display {
display.internalWidth = 512;
display.internalHeight = 480;
display.aspectCorrection = 8.0 / 7.0;
if(Region::NTSC()) display.refreshRate = system.cpuFrequency() / (262.0 * 1364.0);
if(Region::PAL()) display.refreshRate = system.cpuFrequency() / (312.0 * 1364.0);
return display;
}
......
......@@ -16,7 +16,6 @@ auto Interface::display() -> Display {
display.internalWidth = 224;
display.internalHeight = 144;
display.aspectCorrection = 1.0;
display.refreshRate = 3'072'000.0 / (159.0 * 256.0);
if(settings.rotateLeft) {
swap(display.width, display.height);
swap(display.internalWidth, display.internalHeight);
......
......@@ -5,8 +5,9 @@
namespace nall {
struct Boolean;
template<uint Precision> struct Natural;
template<uint Precision> struct Integer;
template<uint Precision = 64> struct Natural;
template<uint Precision = 64> struct Integer;
template<uint Precision = 64> struct Real;
}
#include <nall/primitives/bit-range.hpp>
......
......@@ -2,15 +2,18 @@
namespace nall {
//warning: so that BitRange can modify the underlying number directly, it must bind a reference.
//as a result, auto value = number.bits() will capture by-reference, rather than by-value.
template<int Precision> struct BitRange {
static_assert(Precision >= 1 && Precision <= 64);
static inline constexpr auto bits() -> uint { return Precision; }
using utype =
typename conditional<bits() <= 8, uint8_t,
typename conditional<bits() <= 16, uint16_t,
typename conditional<bits() <= 32, uint32_t,
typename conditional<bits() <= 64, uint64_t,
void>::type>::type>::type>::type;
conditional_t<bits() <= 8, uint8_t,
conditional_t<bits() <= 16, uint16_t,
conditional_t<bits() <= 32, uint32_t,
conditional_t<bits() <= 64, uint64_t,
void>>>>;
static inline constexpr auto mask() -> utype { return ~0ull >> 64 - bits(); }
inline BitRange(utype& source, int lo, int hi) : source(source) {
......@@ -22,13 +25,14 @@ template<int Precision> struct BitRange {
}
inline auto& operator=(BitRange& source) { return set(source.get()); }
inline operator utype() const { return get(); }
inline auto operator++(int) { auto value = get(); set(value + 1); return value; }
inline auto operator--(int) { auto value = get(); set(value - 1); return value; }
inline auto& operator++() { return set(get() + 1); }
inline auto& operator--() { return set(get() - 1); }
inline operator utype() const { return get(); }
template<typename T> inline auto& operator =(const T& value) { return set( value); }
template<typename T> inline auto& operator *=(const T& value) { return set(get() * value); }
template<typename T> inline auto& operator /=(const T& value) { return set(get() / value); }
......
......@@ -4,7 +4,7 @@ namespace nall {
struct Boolean {
static inline constexpr auto bits() -> uint { return 1; }
using type = bool;
using btype = bool;
inline Boolean() : data(false) {}
template<typename T> inline Boolean(const T& value) : data(value) {}
......@@ -23,7 +23,7 @@ struct Boolean {
inline auto serialize(serializer& s) { s(data); }
private:
type data;
btype data;
};
}
......@@ -2,7 +2,7 @@
namespace nall {
template<uint Precision = 64> struct Integer {
template<uint Precision> struct Integer {
static_assert(Precision >= 1 && Precision <= 64);
static inline constexpr auto bits() -> uint { return Precision; }
using stype =
......@@ -16,11 +16,10 @@ template<uint Precision = 64> struct Integer {
static inline constexpr auto sign() -> utype { return 1ull << Precision - 1; }
inline Integer() : data(0) {}
template<int Bits> inline Integer(Integer<Bits> value) { data = mask(value); }
template<uint Bits> inline Integer(Integer<Bits> value) { data = mask(value); }
template<typename T> inline Integer(const T& value) { data = mask(value); }
explicit inline operator bool() const { return data; }
inline operator int64_t() const { return data; }
inline operator stype() const { return data; }
inline auto operator++(int) { auto value = *this; data = mask(data + 1); return value; }
inline auto operator--(int) { auto value = *this; data = mask(data - 1); return value; }
......@@ -28,29 +27,17 @@ template<uint Precision = 64> struct Integer {
inline auto& operator++() { data = mask(data + 1); return *this; }
inline auto& operator--() { data = mask(data - 1); return *this; }
inline auto operator!() const { return !data; }
inline auto operator~() const { return Integer<>{mask(~data)}; }
inline auto operator+() const { return Integer<>{+data}; }
inline auto operator-() const { return Integer<>{data == sign() ? data : -data}; }
#define lhs data
#define rhs value
template<typename T> inline auto& operator =(const T& value) { lhs = mask( rhs); return *this; }
template<typename T> inline auto& operator *=(const T& value) { lhs = mask(lhs * rhs); return *this; }
template<typename T> inline auto& operator /=(const T& value) { lhs = mask(lhs / rhs); return *this; }
template<typename T> inline auto& operator %=(const T& value) { lhs = mask(lhs % rhs); return *this; }
template<typename T> inline auto& operator +=(const T& value) { lhs = mask(lhs + rhs); return *this; }
template<typename T> inline auto& operator -=(const T& value) { lhs = mask(lhs - rhs); return *this; }
template<typename T> inline auto& operator<<=(const T& value) { lhs = mask(lhs << rhs); return *this; }
template<typename T> inline auto& operator>>=(const T& value) { lhs = mask(lhs >> rhs); return *this; }
template<typename T> inline auto& operator &=(const T& value) { lhs = mask(lhs & rhs); return *this; }
template<typename T> inline auto& operator ^=(const T& value) { lhs = mask(lhs ^ rhs); return *this; }
template<typename T> inline auto& operator |=(const T& value) { lhs = mask(lhs | rhs); return *this; }
#undef lhs
#undef rhs
//warning: this does not and cannot short-circuit; value is always evaluated
template<typename T> inline auto orElse(const T& value) { return Integer<>{data ? data : value}; }
template<typename T> inline auto& operator =(const T& value) { data = mask( value); return *this; }