Commit ff3952c7 authored by grtensor's avatar grtensor

First pass of working worksheets and associated metrics

parent a3cb697d
Ndim_ := 3:
x1_ := r:
x2_ := phi:
x3_ := t:
complex_ := {}:
g11_ := 1/(r^2/sigma^2-m+Q^2*ln(r)):
g22_ := r^2:
g33_ := -r^2/sigma^2+m-Q^2*ln(r):
Ndim_ := 3 :
x1_ := x :
x2_ := y :
x3_ := z :
g11_ := c(x,y,z) :
g22_ := d(x,y,z) :
g33_ := e(x,y,z) :
Ndim_ := 4 :
x1_ := r :
x2_ := theta :
x3_ := phi :
x4_ := t :
g11_ := diff(R(r,t),r)^2/(1+f(r)) :
g22_ := R(r,t)^2 :
g33_ := R(r,t)^2*sin(theta)^2 :
g44_ := -1 :
constraint_ := [diff(diff(R(r,t),r),t) = (2*diff(m(r),r)/R(r,t)-2*m(r)*diff(R(r,t),r)/R(r,t)^2+
diff(f(r),r))/(2*sqrt(2*m(r)/R(r,t)+f(r))), diff(R(r,t),t) = sqrt(2*m(r)/R(r,t)+f(r)),
diff(diff(R(r,t),t),t) = -m(r)/R(r,t)^2, diff(diff(diff(R(r,t),t),r),t) =
-diff(m(r),r)/R(r,t)^2+2*m(r)*diff(R(r,t),r)/R(r,t)^3] :
Info_:=`The Tolman dust solution (Proc. Nat. Acad. Sci. 20, 169,1934)`:
Ndim_ := 4 :
x1_ := r :
x2_ := theta :
x3_ := phi :
x4_ := t :
g11_ := diff(R(r,t),r)^2/(1 + f(r)) :
g22_ := R(r,t)^2 :
g33_ := R(r,t)^2*sin(theta)^2 :
g44_ := -1 :
constraint_ := [
diff(R(r,t), r, t, t) = 2*M(r)*diff(R(r,t), r)/R(r,t)^3
- diff(M(r), r)/R(r,t)^2 ,
diff(R(r,t), r, t) = ( 2*diff(M(r), r)/R(r,t)
- 2*M(r)*diff(R(r,t), r)/R(r,t)^2
+ diff(f(r), r) )
/ ( 2*diff(R(r,t), t) ),
diff(R(r,t), t, t) = - M(r)/R(r,t)^2,
diff(R(r,t), t)^2 = 2*M(r)/R(r,t) + f(r)
]:
Info_:=`Tolman metric with constraints by C.W.Hellaby`:
Ndim_ := 4 :
x1_ := r :
x2_ := theta :
x3_ := phi :
x4_ := t :
sig_ := 2 :
g11_ := diff(R(r,t),r)^2/(1+f(r)) :
g22_ := R(r,t)^2 :
g33_ := R(r,t)^2*sin(theta)^2 :
g44_ := -1 :
constraint_ := [diff(diff(R(r,t),r),t) = (2*diff(m(r),r)/R(r,t)-2*m(r)*diff(R(r,t),r)/R(r,t)^2+
diff(f(r),r)+2*Lambda*R(r,t)*diff(R(r,t),r)/3)/(2*sqrt(2*m(r)/R(r,t)+f(r)+Lambda*R(r,t)^2/3)), diff(R(r,t),t) = sqrt(2*m(r)/R(r,t)+f(r)+Lambda*R(r,t)^2/3),
diff(diff(R(r,t),t),t) = -m(r)/R(r,t)^2-Lambda*R(r,t)/3, diff(diff(diff(R(r,t),t),r),t) =
-diff(m(r),r)/R(r,t)^2+2*m(r)*diff(R(r,t),r)/R(r,t)^3-Lambda*diff(R(r,t),r)/3] :
Info_:=`The Tolman dust solution with cosmological constant `:
Ndim_ := 4 :
x1_ := r :
x2_ := theta :
x3_ := phi :
x4_ := t :
sig_ := 2 :
g11_ := diff(R(r,t),r)^2 :
g22_ := R(r,t)^2 :
g33_ := R(r,t)^2*sin(theta)^2 :
g44_ := -1 :
constraint_ := [R(r,t)=((6*m(r)/Lambda)*sinh((3*Lambda)^(1/2)*(t[c](r)-t)/2)^2)^(1/3)] :
Info_:=`The Tolman dust solution with cosmological constant `:
Ndim_ := 5:
x1_ := t:
x2_ := r:
x3_ := theta:
x4_ := phi:
x5_ := y:
complex_ := {}:
g11_ := -exp(F(r))^2*A(t,y)^2:
g22_ := exp(G(r))^2*B(t,y)^2:
g33_ := exp(G(r))^2*B(t,y)^2*H(t,y)^2*r^2:
g44_ := exp(G(r))^2*B(t,y)^2*H(t,y)^2*r^2*sin(theta)^2:
g55_ := exp(K(r))^2*C(t,y)^2:
Ndim_ := 4:
x1_ := r:
x2_ := u:
x3_ := phi:
x4_ := t:
complex_ := {}:
g11_ := 1/((1-2*m/r)^gamma)*((r^2-2*m*r)/(r^2-2*m*r+m*u^2))^delta:
g22_ := 1/((1-2*m/r)^gamma)*(r^2-2*m*r)^epsilon/((r^2-2*m*r+m*u^2)^delta)/(m-u^2):
g33_ := 1/((1-2*m/r)^gamma)*u^2/m*r^2-2/((1-2*m/r)^gamma)*u^2*r:
g44_ := -(1-2*m/r)^gamma:
Info_ := ` gamma metric, u = m^(1/2)sin(theta) `:
constraint_ := [delta = gamma^2-1, epsilon = gamma^2]:
Ndim_ := 4 :
x1_ := x :
x2_ := y :
x3_ := z :
x4_ := t :
g11_ := a^2 :
g22_ := -1/2*a^2*exp(x)^2 :
g24_ := -a^2*exp(x)*c :
g33_ := a^2 :
g44_ := -a^2*c^2 :
Info_ := ` Godel's universe `:
Ndim_ := 3 :
x1_ := t :
x2_ := theta :
x3_ := r :
sig_ := 1 :
g11_ := -cos(2*alpha(r)) :
g12_ := -r*sin(2*alpha(r)) :
g22_ := r^2*cos(2*alpha(r)) :
g33_ := 1 :
Info_:=`Combed hedgehog metric (Williams G.R.G. 23, 181)`:
Ndim_ := 4 :
x1_ := u :
x2_ := w :
x3_ := theta :
x4_ := phi :
g11_ := 1/2*w^2/m/r(u,w) :
g12_ := 1 :
g33_ := r(u,w)^2 :
g44_ := r(u,w)^2*sin(theta)^2 :
constraint_ := [r(u,w) = 2*m+1/4*u*w/m] :
Info_:=`Israel coordinates (Phys. Rev. 143,1016)`:
Ndim_ := 3 :
x1_ := r :
x2_ := theta :
x3_ := t :
g11_ := b^2/r^2 :
g22_ := b^2 :
g33_ := -(1+a*ln(r)-a*ln(b))^2 :
Info_ := ` The back hole that went away `:
Ndim_ := 4:
x1_ := Theta:
x2_ := Phi:
x3_ := Psi:
x4_ := T:
sig_ := 2:
complex_ := {}:
eta11_ := 1:
eta22_ := 1:
eta33_ := 1:
eta44_ := -1:
bd11_ := -exp(a(T))*(1-Psi^2)^(1/2)/(1-Theta^2)^(1/2):
bd12_ := exp(a(T))*Psi*(1-Theta^2)^(1/2):
bd21_ := -exp(b(T))*Psi/(1-Theta^2)^(1/2):
bd22_ := -exp(b(T))*(1-Theta^2)^(1/2)*(1-Psi^2)^(1/2):
bd32_ := Theta*exp(c(T)):
bd33_ := exp(c(T))/(1-Psi^2)^(1/2):
bd44_ := exp(a(T)+b(T)+c(T)):
Info_ := `Mixmaster metric (e.g. MTW Box 30.1, Theta = cos(theta), Psi = sin(psi))`:
Ndim_ := 4 :
x1_ := x :
x2_ := y :
x3_ := z :
x4_ := t :
sig_ := 2 :
g11_ := L^2/(x^2+y^2+z^2) :
g22_ := L^2/(x^2+y^2+z^2) :
g33_ := L^2/(x^2+y^2+z^2) :
g44_ := -P(x,y,z,t)^2 :
constraint_ := [P(x,y,z,t) = a(t)*cos(ln((x^2+y^2+z^2)^(1/2)/L))+b(t)*sin(ln((x^2+y^2+z^2)^(1/2)/L))] :
Ndim_ := 4 :
x1_ := x :
x2_ := y :
x3_ := z :
x4_ := t :
eta11_ := -1 :
eta22_ := -1 :
eta33_ := -1 :
eta44_ := 1 :
bd11_ := L/(x^2+y^2+z^2)^(1/2) :
bd22_ := L/(x^2+y^2+z^2)^(1/2) :
bd33_ := L/(x^2+y^2+z^2)^(1/2) :
bd44_ := P(x,y,z,t) :
constraint_ := [P(x,y,z,t) = a(t)*cos(ln((x^2+y^2+z^2)^(1/2)/L))+b(t)*sin(ln((x^2+y^2+z^2)^(1/2)/L))] :
Ndim_ := 4 :
x1_ := r :
x2_ := u :
x3_ := phi :
x4_ := t :
sig_:= 2:
g11_ := (r^2+u^2)/(r^2-2*m*r+a^2) :
g22_ := (r^2+u^2)/(a^2-u^2) :
g33_ := (a^2-u^2)/a^2*(r^2+a^2+2*(a^2-u^2)*m*r/(r^2+u^2)) :
g34_ := -2*(a^2-u^2)/a*m*r/(r^2+u^2) :
g44_ := -1+2*m*r/(r^2+u^2) :
Info_:=`The Kerr metric in Boyer-Lindquist type coordinates (u=a*cos(theta)).`:
constraint_ := [u=a*cos(theta)]:
Ndim_ := 4:
x1_ := r:
x2_ := u:
x3_ := phi:
x4_ := t:
sig_ := 2:
complex_ := {}:
g11_ := (r^2+u^2)/(r^2-2*m*r+a^2+Q^2):
g22_ := (r^2+u^2)/(a^2-u^2):
g33_ := ((a^2-u^2)/a^2)*(r^2+a^2+(a^2-u^2)*(2*m*r-Q^2)/(r^2+u^2)):
g34_ := -((a^2-u^2)/a)*(2*m*r-Q^2)/(r^2+u^2):
g43_ := -((a^2-u^2)/a)*(2*m*r-Q^2)/(r^2+u^2):
g44_ := -(1-(2*m*r - Q^2)/(r^2+u^2)):
constraint_ := [u=a*cos(theta)]:
Info_:=`Kerr Newman Solution in Boyer-Lindquist coordinates (u=a*cos(theta))`:
Ndim_ := 4:
x1_ := r:
x2_ := psi:
x3_ := theta:
x4_ := phi:
complex_ := {}:
g11_ := 1/alpha(r):
g22_ := 1/4*r^2*beta(r):
g24_ := 1/4*r^2*beta(r)*cos(theta):
g33_ := 1/4*r^2*alpha(r)*cos(psi)^2+1/4*r^2/beta(r)*sin(psi)^2:
g34_ := 1/4*r^2*alpha(r)*cos(psi)*sin(psi)*sin(theta)-1/4*r^2/beta(r)*cos(psi)*sin(psi)*sin(theta):
g44_ := 1/4*r^2*alpha(r)*sin(psi)^2*sin(theta)^2+1/4*r^2/beta(r)*cos(psi)^2*sin(theta)^2+1/4*r^2*beta(r)*cos(theta)^2:
Ndim_ := 4 :
x1_ := t :
x2_ := r :
x3_ := theta :
x4_ := phi :
eta12_ := 1 :
eta34_ := -1 :
bd11_ := 1 :
bd12_ := -(r^2+a^2*cos(theta)^2)/(r^2-2*M*r+a^2+Q^2) :
bd14_ := -a*sin(theta)^2 :
bd21_ := 1/2*(r^2-2*M*r+a^2+Q^2)/(r^2+a^2*cos(theta)^2) :
bd22_ := 1/2 :
bd24_ := -1/2*a*(r^2-2*M*r+a^2+Q^2)*sin(theta)^2/(r^2+a^2*cos(theta)^2) :
bd31_ := 1/2*(I*sin(theta)*r+sin(theta)*a*cos(theta))*a*2^(1/2)/(r^2+a^2*cos(theta)^2) :
bd33_ := -1/2*(r-I*a*cos(theta))*2^(1/2) :
bd34_ := -1/2*(I*sin(theta)*r+sin(theta)*a*cos(theta))*(r^2+a^2)*2^(1/2)/(r^2+a^2*cos(theta)^2) :
bd41_ := 1/2*(-I*sin(theta)*r+sin(theta)*a*cos(theta))*a*2^(1/2)/(r^2+a^2*cos(theta)^2) :
bd43_ := -1/2*(r+I*a*cos(theta))*2^(1/2) :
bd44_ := -1/2*(-I*sin(theta)*r+sin(theta)*a*cos(theta))*(r^2+a^2)*2^(1/2)/(r^2+a^2*cos(theta)^2) :
Info_:=`Covariant NPtetrad for Kerr-Newman metric(Boyer-Lindquist coordinates (J. Math. Phys. 8 265))`:
Ndim_ := 4:
x1_ := r:
x2_ := theta:
x3_ := phi:
x4_ := t:
sig_:= 2:
g11_ := 1/(1-2*m/r-Lambda*r^2/3+e^2/r^2):
g22_ := r^2:
g33_ := r^2*sin(theta)^2:
g44_ := -(1-2*m/r-Lambda*r^2/3+e^2/r^2):
Info_:=`The Reissner-Nordstrom-de Sitter metric`:
Ndim_ := 4:
x1_ := r:
x2_ := theta:
x3_ := phi:
x4_ := t:
sig_:= 2:
g11_ := 1/(1-2*m/r-Lambda*r^2/3+Q^2/r^2):
g22_ := r^2:
g33_ := r^2*sin(theta)^2:
g44_ := -(1-2*m/r-Lambda*r^2/3+Q^2/r^2):
Info_:=`The Reissner-Nordstrom-de Sitter metric`:
Ndim_ := 4 :
x1_ := r :
x2_ := theta :
x3_ := phi :
x4_ := t :
sig_ := 2:
g11_ := exp(lambda(r,t)) :
g22_ := exp(mu(r,t)) :
g33_ := exp(mu(r,t))*sin(theta)^2 :
g44_ := -exp(nu(r,t)) :
Ndim_ := 4 :
x1_ := r :
x2_ := theta :
x3_ := phi :
x4_ := t :
g11_ := 1/A(r) :
g22_ := r^2 :
g33_ := r^2*sin(theta)^2 :
g44_ := -A(r) :
Ndim_ := 4 :
x1_ := r :
x2_ := theta :
x3_ := phi :
x4_ := t :
g11_ := exp(lambda(r/t)) :
g22_ := r^2 :
g33_ := r^2*sin(theta)^2 :
g44_ := -exp(nu(r/t)) :
Info_ := ` Self-similar metric "curvature form" `:
Ndim_ := 4 :
x1_ := r :
x2_ := theta :
x3_ := phi :
x4_ := t :
g11_ := exp(Lambda(r/t)) :
g22_ := R(r/t)^2*t^2 :
g33_ := R(r/t)^2*t^2*sin(theta)^2 :
g44_ := -exp(Delta(r/t)) :
Info_ := ` Self-similar metric "comoving form" `:
Ndim_ := 4 :
x1_ := v :
x2_ := r :
x3_ := theta :
x4_ := phi :
g11_ := -c(r/v)^2+2*c(r/v)^2*h(r/v)/r*v :
g12_ := c(r/v) :
g33_ := r^2 :
g44_ := r^2*sin(theta)^2 :
Info_ := ` Self-similar metric "Bondi form" `:
Ndim_ := 4 :
x1_ := x :
x2_ := y :
x3_ := z :
x4_ := t :
g11_ := 1/V(x,y,z,t)^2 :
g22_ := 1/V(x,y,z,t)^2 :
g33_ := 1/V(x,y,z,t)^2 :
g44_ := -9*diff(V(x,y,z,t),t)^2/Theta(t)^2/V(x,y,z,t)^2 :
constraint_ := [diff(V(x,y,z,t),t,z,x) =0,diff(V(x,y,z,t),y,t,z)=0,diff(V(x,y,z,t),y,x,t)=0,diff(V(x,y,z,t),z,z,t)=diff(V(x,y,z,t),x,x,t),diff(V(x,y,z,t),y,y,t)=diff(V(x,y,z,t),x,x,t),
diff(V(x,y,z,t),x,y)=0,diff(V(x,y,z,t),x,z)=0,diff(V(x,y,z,t),y,z)=0,diff(V(x,y,z,t),y,y)=diff(V(x,y,z,t),x,x),diff(V(x,y,z,t),z,z)=diff(V(x,y,z,t),x,x)] :
Ndim_ := 4 :
x1_ := u :
x2_ := v :
x3_ := t :
x4_ := phi :
g11_ := U(u,v)/((1+u)*u) :
g22_ := U(u,v)/((1-v)*v) :
g33_ := -f(u,v) :
g34_ := f(u,v)*omega(u,v) :
g43_ := f(u,v)*omega(u,v) :
g44_ := m^2*p^2*u*v/(4*f(u,v))-f(u,v)*omega(u,v)^2 :
constraint_ := [omega(u,v)=2*m*q*c(u,v)*v/a(u,v),U(u,v)=b(u,v)*m^2/(16*p^2*(u+v)^3),f(u,v)=a(u,v)/b(u,v)]:
Ndim_ := 2 :
x1_ := theta :
x2_ := phi :
g11_ := F(theta)^2 :
g22_ := G(theta)^2 :
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
{VERSION 4 0 "Mac OS X" "4.0" }
{USTYLETAB {PSTYLE "Heading 1" -1 3 1 {CSTYLE "" -1 -1 "Times" 1 18 0
0 0 1 2 1 2 2 2 2 1 0 0 1 }1 1 0 0 8 4 2 0 2 0 2 2 -1 1 }{PSTYLE "War
ning" -1 7 1 {CSTYLE "" -1 -1 "Courier" 1 10 0 0 255 1 2 2 2 2 2 1 1 0
0 1 }1 1 0 0 0 0 2 0 2 0 2 2 -1 1 }{PSTYLE "Left Justified Maple Outp
ut" -1 12 1 {CSTYLE "" -1 -1 "Times" 1 12 0 0 0 1 2 2 2 2 2 2 1 0 0 1
}1 1 0 0 0 0 2 0 2 0 2 2 -1 1 }{PSTYLE "Fixed Width" -1 17 1 {CSTYLE "
" -1 -1 "Courier" 1 10 0 0 0 1 2 2 2 2 2 2 1 0 0 1 }3 1 0 0 0 0 2 0 2
0 2 2 -1 1 }{PSTYLE "Help" -1 10 1 {CSTYLE "" -1 -1 "Courier" 1 9 0 0
255 1 2 2 2 2 2 1 1 0 0 1 }1 1 0 0 0 0 2 0 2 0 2 2 -1 1 }{PSTYLE "Head
ing 4" -1 20 1 {CSTYLE "" -1 -1 "Times" 1 10 0 0 0 1 1 1 2 2 2 2 1 0 0
1 }1 1 0 0 0 0 2 0 2 0 2 2 -1 1 }{PSTYLE "Line Printed Output" -1 6 1
{CSTYLE "" -1 -1 "Courier" 1 10 0 0 255 1 2 2 2 2 2 1 1 0 0 1 }1 1 0
0 0 0 2 0 2 0 2 2 -1 1 }{PSTYLE "Heading 2" -1 4 1 {CSTYLE "" -1 -1 "T
imes" 1 14 0 0 0 1 2 1 2 2 2 2 1 0 0 1 }1 1 0 0 8 2 2 0 2 0 2 2 -1 1 }
{PSTYLE "Maple Output" -1 11 1 {CSTYLE "" -1 -1 "Times" 1 12 0 0 0 1 2
1 2 2 2 2 1 0 0 1 }3 1 0 0 0 0 2 0 2 0 2 2 -1 1 }{PSTYLE "Heading 3"
-1 5 1 {CSTYLE "" -1 -1 "Times" 1 12 0 0 0 1 1 1 2 2 2 2 1 0 0 1 }1 1
0 0 0 0 2 0 2 0 2 2 -1 1 }{PSTYLE "Diagnostic" -1 9 1 {CSTYLE "" -1 -1
"Courier" 1 10 64 128 64 1 2 2 2 2 2 1 1 0 0 1 }1 1 0 0 0 0 2 0 2 0 2
2 -1 1 }{PSTYLE "Ordered List 1" -1 200 1 {CSTYLE "" -1 -1 "Times" 1
12 0 0 0 1 2 2 2 2 2 2 1 0 0 1 }1 1 0 0 3 3 2 0 2 0 2 2 -1 1 }{PSTYLE
"Text Output" -1 2 1 {CSTYLE "" -1 -1 "Courier" 1 10 0 0 255 1 2 2 2 2
2 1 1 0 0 1 }1 1 0 0 0 0 2 0 2 0 2 2 -1 1 }{PSTYLE "Ordered List 2"
-1 201 1 {CSTYLE "" -1 -1 "Times" 1 12 0 0 0 1 2 2 2 2 2 2 1 0 0 1 }1
1 0 0 3 3 2 36 2 0 2 2 -1 1 }{PSTYLE "Ordered List 3" -1 202 1 {CSTYLE
"" -1 -1 "Times" 1 12 0 0 0 1 2 2 2 2 2 2 1 0 0 1 }1 1 0 0 3 3 2 72 2
0 2 2 -1 1 }{PSTYLE "R3 Font 0" -1 203 1 {CSTYLE "" -1 -1 "Helvetica"
1 10 255 0 0 1 2 1 2 2 2 2 1 0 0 1 }1 1 0 0 0 0 2 0 2 0 2 2 -1 1 }
{PSTYLE "Ordered List 4" -1 204 1 {CSTYLE "" -1 -1 "Times" 1 12 0 0 0
1 2 2 2 2 2 2 1 0 0 1 }1 1 0 0 3 3 2 108 2 0 2 2 -1 1 }{PSTYLE "Ordere
d List 5" -1 205 1 {CSTYLE "" -1 -1 "Times" 1 12 0 0 0 1 2 2 2 2 2 2 1
0 0 1 }1 1 0 0 3 3 2 144 2 0 2 2 -1 1 }{PSTYLE "Annotation Title" -1
206 1 {CSTYLE "" -1 -1 "Times" 1 18 0 0 0 1 2 1 2 2 2 2 1 0 0 1 }3 1 0
0 12 12 2 0 2 0 2 2 -1 1 }{PSTYLE "HyperlinkError" -1 207 1 {CSTYLE "
" -1 -1 "Courier New" 1 12 255 0 255 1 2 2 1 2 2 1 1 0 0 1 }1 1 0 0 0
0 2 0 2 0 2 2 -1 1 }{PSTYLE "HyperlinkWarning" -1 208 1 {CSTYLE "" -1
-1 "Courier New" 1 12 0 0 255 1 2 2 1 2 2 1 1 0 0 1 }1 1 0 0 0 0 2 0 2
0 2 2 -1 1 }{PSTYLE "Bullet Item" -1 15 1 {CSTYLE "" -1 -1 "Times" 1
12 0 0 0 1 2 2 2 2 2 2 1 0 0 1 }1 1 0 0 3 3 2 0 2 0 2 2 -1 1 }{PSTYLE
"Maple Plot" -1 13 1 {CSTYLE "" -1 -1 "Times" 1 12 0 0 0 1 2 2 2 2 2 2
1 0 0 1 }3 1 0 0 0 0 2 0 2 0 2 2 -1 1 }{PSTYLE "List Item" -1 14 1
{CSTYLE "" -1 -1 "Times" 1 12 0 0 0 1 2 2 2 2 2 2 1 0 0 1 }1 1 0 0 3 3
2 0 2 0 2 2 -1 1 }{PSTYLE "Dash Item" -1 16 1 {CSTYLE "" -1 -1 "Times
" 1 12 0 0 0 1 2 2 2 2 2 2 1 0 0 1 }1 1 0 0 3 3 2 0 2 0 2 2 -1 1 }
{PSTYLE "Error" -1 8 1 {CSTYLE "" -1 -1 "Courier" 1 10 255 0 255 1 2 2
2 2 2 1 1 0 0 1 }1 1 0 0 0 0 2 0 2 0 2 2 -1 1 }{PSTYLE "Title" -1 18
1 {CSTYLE "" -1 -1 "Times" 1 18 0 0 0 1 2 1 1 2 2 2 1 0 0 1 }3 1 0 0
12 12 2 0 2 0 2 2 -1 1 }{PSTYLE "Normal" -1 0 1 {CSTYLE "" -1 -1 "Time
s" 1 12 0 0 0 1 2 1 2 2 2 2 1 0 0 1 }1 1 0 0 0 0 2 0 2 0 2 2 -1 1 }
{PSTYLE "R3 Font 2" -1 209 1 {CSTYLE "" -1 -1 "Courier" 1 10 0 0 0 1 2
2 2 2 2 2 1 0 0 1 }1 1 0 0 0 0 2 0 2 0 2 2 -1 1 }{PSTYLE "Author" -1
19 1 {CSTYLE "" -1 -1 "Times" 1 12 0 0 0 1 2 2 2 2 2 2 1 0 0 1 }3 1 0
0 8 8 2 0 2 0 2 2 -1 1 }{CSTYLE "Help Variable" -1 25 "Courier" 1 12 0
0 0 1 2 2 2 2 2 2 0 0 0 1 }{CSTYLE "Help Underlined Bold" -1 41 "Time
s" 1 12 0 0 0 1 1 1 2 2 2 2 0 0 0 1 }{CSTYLE "Copyright" -1 34 "Times"
1 10 0 0 0 1 2 2 2 2 2 2 0 0 0 1 }{CSTYLE "Maple Comment" -1 21 "Cour
ier" 1 12 0 0 0 1 2 1 2 2 2 2 0 0 0 1 }{CSTYLE "Popup" -1 31 "Times" 1
12 0 128 128 1 1 2 1 2 2 2 0 0 0 1 }{CSTYLE "Atomic Variable" -1 200
"Times" 1 12 175 0 175 1 1 2 2 2 2 2 0 0 0 1 }{CSTYLE "Dictionary Hype
rlink" -1 45 "Times" 1 12 147 0 15 1 2 2 1 2 2 2 0 0 0 1 }{CSTYLE "Plo
t Text" -1 28 "Times" 1 8 0 0 0 1 2 2 2 2 2 2 0 0 0 1 }{CSTYLE "2D Inp
ut" -1 19 "Times" 1 12 255 0 0 1 2 2 2 2 1 2 0 0 0 1 }{CSTYLE "Code"
-1 201 "Courier New" 1 12 255 0 0 1 2 2 2 2 2 2 0 0 0 1 }{CSTYLE "2D M
ath Italic" -1 3 "Times" 1 12 0 0 0 1 1 2 2 2 2 2 0 0 0 1 }{CSTYLE "2D
Math Small" -1 7 "Times" 1 1 0 0 0 1 2 2 2 2 2 2 0 0 0 1 }{CSTYLE "2D
Math Bold Small" -1 10 "Times" 1 1 0 0 0 1 2 1 2 2 2 2 0 0 0 1 }
{CSTYLE "Help Bold" -1 39 "Times" 1 12 0 0 0 1 2 1 2 2 2 2 0 0 0 1 }
{CSTYLE "Help Menus" -1 36 "Times" 1 12 0 0 0 1 2 1 2 2 2 2 0 0 0 1 }
{CSTYLE "Help Heading" -1 26 "Times" 1 14 0 0 0 1 2 1 2 2 2 2 0 0 0 1
}{CSTYLE "2D Output" -1 20 "Times" 1 12 0 0 255 1 2 2 2 2 2 2 0 0 0 1
}{CSTYLE "2D Inert Output" -1 202 "Times" 1 12 144 144 144 1 2 2 2 2 1
2 0 0 0 1 }{CSTYLE "Help Normal" -1 30 "Times" 1 12 0 0 0 1 2 2 2 2 2
2 0 0 0 1 }{CSTYLE "Maple Input" -1 0 "Courier" 1 12 255 0 0 1 2 1 2
2 1 2 0 0 0 1 }{CSTYLE "Page Number" -1 33 "Times" 1 12 0 0 0 1 2 2 2
2 2 2 0 0 0 1 }{CSTYLE "Header and Footer" -1 203 "Times" 1 10 0 0 0 1
2 2 2 2 2 2 0 0 0 1 }{CSTYLE "Help Fixed" -1 23 "Courier" 1 10 0 0 0
1 2 2 2 2 2 2 0 0 0 1 }{CSTYLE "Output Labels" -1 29 "Times" 1 8 0 0 0
1 2 2 2 2 2 2 0 0 0 1 }{CSTYLE "Help Notes" -1 37 "Times" 1 12 0 0 0
1 2 1 2 2 2 2 0 0 0 1 }{CSTYLE "Help Underlined" -1 44 "Times" 1 12 0
0 0 1 2 2 1 2 2 2 0 0 0 1 }{CSTYLE "2D Math Italic Small" -1 204 "Time
s" 1 1 0 0 0 1 1 2 2 2 2 2 0 0 0 1 }{CSTYLE "2D Math Symbol 2" -1 16 "
Times" 1 12 0 0 0 1 2 2 2 2 2 2 0 0 0 1 }{CSTYLE "2D Math" -1 2 "Times
" 1 12 0 0 0 1 2 2 2 2 2 2 0 0 0 1 }{CSTYLE "Help Nonterminal" -1 24 "
Courier" 1 12 0 0 0 1 2 1 2 2 2 2 0 0 0 1 }{CSTYLE "Annotation Text"
-1 205 "Times" 1 12 0 0 0 1 2 2 2 2 2 2 0 0 0 1 }{CSTYLE "Help Maple N
ame" -1 35 "Times" 1 12 104 64 92 1 2 1 2 2 2 2 0 0 0 1 }{CSTYLE "Text
" -1 206 "Times" 1 12 0 0 0 1 2 2 2 2 2 2 0 0 0 1 }{CSTYLE "Plot Title
" -1 27 "Times" 1 10 0 0 0 1 2 1 2 2 2 2 0 0 0 1 }{CSTYLE "Help Underl
ined Italic" -1 43 "Times" 1 12 0 0 0 1 1 2 1 2 2 2 0 0 0 1 }{CSTYLE "
Caption Reference" -1 207 "Times" 1 12 0 0 0 1 2 1 2 2 2 2 0 0 0 1 }
{CSTYLE "Default" -1 38 "Times" 1 12 0 0 0 1 2 2 2 2 2 2 0 0 0 1 }
{CSTYLE "Help Italic Bold" -1 40 "Times" 1 12 0 0 0 1 1 2 2 2 2 2 0 0
0 1 }{CSTYLE "Maple Input Placeholder" -1 208 "Courier New" 1 12 200 0
200 1 2 1 2 2 1 2 0 0 0 1 }{CSTYLE "LaTeX" -1 32 "Times" 1 12 0 0 0 1
2 2 2 2 2 2 0 0 0 1 }{CSTYLE "Help Emphasized" -1 22 "Times" 1 12 0 0
0 1 1 2 2 2 2 2 0 0 0 1 }{CSTYLE "Equation Label" -1 209 "Times" 1 12
0 0 0 1 2 1 2 2 2 2 0 0 0 1 }{CSTYLE "2D Comment" -1 18 "Times" 1 12
0 0 0 1 2 2 2 2 2 2 0 0 0 1 }{CSTYLE "Help Italic" -1 42 "Times" 1 12
0 0 0 1 1 2 2 2 2 2 0 0 0 1 }{CSTYLE "Prompt" -1 1 "Courier" 1 12 0 0
0 1 2 1 2 2 2 2 0 0 0 1 }{CSTYLE "2D Math Bold" -1 5 "Times" 1 12 0 0
0 1 2 1 2 2 2 2 0 0 0 1 }{CSTYLE "Hyperlink" -1 17 "Times" 1 12 0 128
128 1 2 2 1 2 2 2 0 0 0 1 }{CSTYLE "Caption Text" -1 210 "Times" 1 12
0 0 0 1 2 1 2 2 2 2 0 0 0 1 }}
{SECT 0 {EXCHG {PARA 0 "" 0 "" {TEXT 211 184 "Demonstration 1 (kawai)
: Here we take a look at \"the black hole that went away\" . Note tha
t we avoid use of $r_o$to designate a constant in the input since r i
s used as a coordinate." }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 8 "restart:"
}}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 15 "with(grtensor);" }}
{PARA 11 "" 1 "" {XPPMATH 20 "Q-GRTensor~III6\"" }}{PARA 11 "" 1 ""
{XPPMATH 20 "QZCopyright~2016,~Peter~Musgrave,~Denis~Pollney,~Kayll~La
ke6\"" }}{PARA 11 "" 1 "" {XPPMATH 20 "Q-grtensor.org6\"" }}{PARA 11 "
" 1 "" {XPPMATH 20 "79I%AsymG6\"I.KillingCoordsGF$I$SymGF$I*autoAliasG
F$I(gralterGF$I'grcalcGF$I,grcalcalterGF$I,grcomponentGF$I(grdebugGF$I
&grdefGF$I*grdisplayGF$I'grinitGF$I'grloadGF$I*grloaddefGF$I&grmapGF$I
*groptionsGF$I*grsavedefGF$I,grtestinputGF$I,grtransformGF$I'kdeltaGF$
I&makegGF$I)nptetradGF$I&qloadGF$" }}}{EXCHG {PARA 0 "> " 0 ""
{MPLTEXT 1 0 13 "qload(kawai);" }}{PARA 6 "" 1 "" {TEXT 212 39 "Calcul
ated ds for kawai (0.001000 sec.)" }}{PARA 11 "" 1 "" {XPPMATH 20 "/I2
Default~spacetimeG6\"I&kawaiGF$" }}{PARA 11 "" 1 "" {XPPMATH 20 "I9For
~the~kawai~spacetime:G6\"" }}{PARA 11 "" 1 "" {XPPMATH 20 "I,Coordinat
esG6\"" }}{PARA 11 "" 1 "" {XPPMATH 20 "-I\"xG6\"6#I#upGF$" }}{PARA 11
"" 1 "" {XPPMATH 20 "/)I#x~G6\"I\"aGF%=F%6#;\"\"\"\"\"$E\\[l$F*I\"rGF
%\"\"#I&thetaGF%F+I\"tGF%" }}{PARA 11 "" 1 "" {XPPMATH 20 "I-Line~elem
entG6\"" }}{PARA 11 "" 1 "" {XPPMATH 20 "/*$I$~dsG6\"\"\"#,(**I\"bGF%F
&I\"rGF%!\"#I#~dGF%\"\"\")F*I#2~GF%F-F-*(F)F&F,F-)I&thetaGF%F/F-F-*(,(
F-F-*&I\"aGF%F--I#lnG6$%*protectedGI(_syslibGF%6#F*F-F-*&F6F--F86#F)F-
!\"\"F&F,F-)I\"tGF%F/F-F@" }}{PARA 11 "" 1 "" {XPPMATH 20 "IE~~~~The~b
ack~hole~that~went~away~~~~G6\"" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT
1 0 23 "grcalc(R(dn,dn,dn,dn));" }}{PARA 6 "" 1 "" {TEXT 212 49 "Calcu
lated g(dn,dn,pdn) for kawai (0.001000 sec.)" }}{PARA 6 "" 1 "" {TEXT
212 50 "Calculated Chr(dn,dn,dn) for kawai (0.001000 sec.)" }{TEXT
212 42 "\nCalculated detg for kawai (0.004000 sec.)" }{TEXT 212 8 "\np
recalc" }{TEXT 212 46 "\nCalculated g(up,up) for kawai (0.006000 sec.)
" }{TEXT 212 52 "\nCalculated R(dn,dn,dn,dn) for kawai (0.001000 sec.)
" }}{PARA 11 "" 1 "" {XPPMATH 20 "/I*CPU~Time~G6\"$\"#7!\"$" }}}
{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 13 "grdisplay(_);" }}{PARA 11 ""
1 "" {XPPMATH 20 "I9For~the~kawai~spacetime:G6\"" }}{PARA 11 "" 1 ""
{XPPMATH 20 "I2Covariant~RiemannG6\"" }}{PARA 11 "" 1 "" {XPPMATH 20 "
/I/R(dn,dn,dn,dn)G6\"I8All~components~are~zeroGF$" }}}{EXCHG {PARA 0 "
> " 0 "" {MPLTEXT 1 0 0 "" }}}}
{MARK "0 0 0" 0 }{VIEWOPTS 1 1 0 1 1 1803 1 1 1 1 }{PAGENUMBERS 0 1 2
33 1 1 }
\ No newline at end of file
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment