v
GitLab

Diffs and Commenting on Diffs

Create Deep Dive
Oswaldo Ferreira - Backend Engineer
January 28, 2018

about.gitlab.com

https://about.gitlab.com

Today we'll cover

e Overview of what a “git diff” is

e Where do we present diffs on GitLab? (Demo / Introduction)

e Overview of how diffs are stored, fetched and presented on GitLab and Gitaly
o Forstandard comparison view

o For merge requests
o For comments on merge requests and commits

Table of Contents

Demo
Workflows
Tables
Caching layers
Code dive
Questions

What are git diffs?

git-diff is a function that takes two input data sets and outputs the changes between
them. git diff is a multi-use Git command that when executed runs a diff function on Git
data sources. These data sources can be commits, branches, files and more.

98ca9..
eB8455. .
commit size -
/‘ 0de24.. blob SIZE
tree 0de24 = LICENSE:
parent il tree | size '
T (The MIT License)
author Scott
€0 blob |e8455 | README Copyright (c) 2007 Tom Preston|
committer | Scott 3
= - tree | 10a£9 1ib Permission is hereby gronted,
my (0'"'“; :gzi‘{gf gzz{lyczzol * ree of charge, to any person ol

10af9 bc52a. .
tree | e blob I e
blob |bc52a [mylib.rb :i:jﬂrﬂ grit/index

uire "grit/status’

tree |b70£8 |inc
(] module Grit
class << se

1f
ottr_accessor :debug

b70£8..

Oadla..
tree |she -
blob Isme
blob |0adla |tricks.rb

require ‘grit/git-ruby/repost

What are git diffs?

diff --git a/lib/gitlab/gon_helper.rb b/lib/gitlab/gon_helper.rb + B lib/gitlab/gon_helper.rb G ® View file @ 82ef3445
index 15137146639..9b1794eec91 166644
--- a/lib/gitlab/gon_helper.rb
=+ n/llb/gitlab/gon helper.rb
7 module Gitlab -
def add_gon_variables . d r ‘ . ri = default_avatar_url
gon.api_version

path('no_avatar.png*))

webpack_public_path

webpack_public_path

gon.max_file_size = Gitlab::CurrentSettings.max_attachment_size

gon.asset_host ActionController: :Base.asset_host # use t thod to pu: tiple feature flags # use t od to push mu e featu ags.

gon.webpack _public_path = webpack_public_path .push({ features: { var_name => enabled } } .push({ features: { var_name => enabled } }, true)
€ module Gitlab

use this method to push multiple feature flags.

gon.push({ features: { var_name => enabled } }, true)
end

(*no_avatar.pn

end
end
diff --git a/spec/lib/gitlab/gon_helper_spec.rb b/spec/lib/gitlab/gon_helper_spec.rb
index c6f89ca2112..1ff2334bacf 166644 S
--- a/spec/lib/gitlab/gon_helper_spec.rb ~ B speclib/gitabjgon_helper_spec.rb @
e+ b/spec/lib/gitlab/gon helper_spec.rb

describe Gitlab::GonHelper do
nelper push_frontend_feature_flag(:my_feature_flag, 10)
end
end

® View file @ 8273445

helper.push_fr eatu ag(:my_feature_flag, 10) flag(:my_feature_flag, 10)

end

describe '#default_avatar_url' do
it ‘'returns an absolute URL' do
url = helper.default_ava

expect (url).to match(/~http/)
expect(url).to match(/no_avatar.*png$/)
end
end

Standard comparison view diffs (workflow)

e Fetching
o Submits a diff request to Gitaly (through diffé{commit_diff RPC) with limits and refs

o Diff limits are applied (on Gitaly) to the diff file collection

m Gitlab::Diff::FileCollection::Compare
m Gitlab::Git:DiffCollection

o Most of the process is triggered via Gitlab::Diff::FileCollection::Compare
e Presentation
o Eachdifffileis parsed
m Gitlab::Diff::File
m Gitlab::Diff::Line
o Load through project/diffs/_diffs.html.haml (not async)

https://docs.gitlab.com/ee/development/diffs.html#diff-limits

Merge request diffs

1. Storage
2. Fetching
3. Presentation

Merge request diffs (Storage)

te_table "merge_request_diffs",
.string "state"

.integer "merge_request_id",

.datetime "created_at"

.datetime "updated_at"

.string "base_commit_sha"

.string "real_size"

.string "head commit_sha"

.string "start_commit_sha"

.integer "commits_count"

.index ["merge_request id", "id"],

name: "index merge_request_diffs_on_merge request_id and_id",

Attt

ate_table "merge_request_diff files",
.integer "merge_ request_diff 1d” L
.integer "relative order"

.boolean "new file" ,l:

.boolean "renamed flle“

.boolean "deleted file",
.boolean "too_large",
.string "a_mode",
.string "b _mode",

.text "new_path", null:
.text "old path” null:
.text "diff", null:
.boolean ”blnary

.index ["merge_request_diff_id", "relative_order"]

name: "index_merge_request_diff_ files _on_mr_diff_id_and_order"

~h ~h =h —
0 ~3

~h

t
t
t
t
t
t
t
t
t
t
t
t
t

Merge request diffs (Storage workflow)

e When a push is received for a branch (source), a new MR version is stored (fetch is done

via Gitaly though the same process of the comparison view)
o MergeRequests::ReloadDiffsService#execute

e Creates a new merge_request_diffs record and one or more merge_request_diff_files
(one for each file)

e Refreshes the diff highlighting cache (Highlighting is essentially a heavy process)

e Ifanew pushisreceived, a new merge_request_diffs is created, and
merge_request_diff_files are re-created (no deletion or update happens here)

e We’re looking forward to store these in Object Storage soon

https://gitlab.com/gitlab-org/gitlab-ce/issues/52568

Merge request diffs (Fetching workflow)

e Once we have the persisted MR version, we fetch it from DB
O Gitlab::Diff::FileCollection::MergeRequestDiff

e Thediff highlighting cache is refreshed (if empty) and used (7 days cache)
[

Diff stats (files additions and deletions) for each file are also fetched from Gitaly
(diff_service#diff_stats RPC) on this process

e Ifthereis any diff comments in positions outside the diff (the diff was expanded by the
user and a comment was left), we unfold it (see: Gitlab::Diff::LinesUnfolder) on the fly

}
{

"buildsystem": "meson",

Merge request diffs (Presentation workflow)

e Unlike the standard comparison view, we do load diffs async for MR Diffs tab
e Diff files and lines serialization is mainly done by DiffFileEntity
e We can see a few performance issues with the actual size of the serialized JSON and

we’re looking forward to improve that by:
o Reducing the amount of data we return (being mindful if everything is really needed by FE)
o Inthefuture, loading diffs in sequential batches, which should lead to a much better UX

https://gitlab.com/gitlab-org/gitlab-ce/issues/52499

Merge request diffs (caching layers)

1. Postgres: The actual raw diff files content
a. Why: At some pointin time, we didn’t have keep-around refs, therefore, after a MR was
merged it was impossible to present the diffs
b. “Side-effect”: Performance improvement ¥
c. How:merge_request_diff_files table
2. Redis: Latest highlighted diff content
a. Why: Generating diff highlight HTML (today we use Rouge) is a relatively slow task to
make under a request
b. How: Gitlab::Diff::HighlightCache

https://github.com/jneen/rouge

Comments on diffs (Discussion tab)

Administrator @root started a discussion on an old version of the diff 1 week ago

[§ LICENSE @

The GNU General Public License is a free, copyleft license for
software and other kinds of works.

Adding x
Administrator @root commented 1 week ago nal b
Suggested change @ Applied
12 -~ Adding x
Adding

Resolve discussion

Comments on diffs

1. Storage
2. Fetching
3. Presentation

Comments on diffs (Storage)

create_table "notes", force: :cascade do

t.Striné "line_code"~ File path SHA, e.g. 02d635fb83402a9a1a0c113772f1e6d365723b95_93_90

t.text “posiiion“
t.text "original_position"

t.text "change_position"

Comments on merge request diffs (Storage)

create_table "note_diff_files", force: :cascade do |t|
t.integer "diff_note_id", null: false

text "diff", null: false

.boolean "new_file", null: false

.boolean "renamed_file", null: false

.boolean "deleted_file", null: false

.string "a_mode", null: false

.string "b_mode", null: false

.text "new_path", null: false

.text "old_path", null: false

.index ["diff_note_id"], name: "index_note_diff_files_on_diff_note_id", unique: true, using: :btree

t
t
t
t
t
t
t
t
t
d

Obs: We delete merge_request_diff files after a MR gets merged, therefore reusing all diffs from
MRs is not possible.

Comments on diffs (Storage)

e DiffNote positions

o original_position
m Mainly used to present the comment in the Discussion tab of Merge Requests
m Isn’tupdated as new MR versions are added

o position
m Mainly used to know where exactly we should present the comment in the Diffs tab
m Isupdated to the latest MR version if the line wasn’t changed (outdated)

o change_position
m Mainly used to know in which context the commented line was changed
m Isupdated when the line the note was left was changed (position stops being updated)

> {:base sha=>"

:start_sha=>"

thead sha=>" 3 Thong Kuah @ @tkuah changed this line in version 8 of the diff 1 month ago
:old_path=>" i

:new_path=>"
:position type=>"
:old line=>nil,
:new line=>47}

Unresolve discussion

° base_sha: Point in time where it was branched off of the target
branch
start_sha: Latest HEAD of target branch

. head_sha: Latest HEAD of source branch

Comments on diffs (Storage workflow)

1. When someone comments in a diff (the whole diff is not persisted):
o It fetches the raw diff for the original_position ref (which won’t change after updating
the MR), commit_service#find_commit RPC is used
m original_position is a Gitlab::Diff::Position containing the line positions and ref in
the diff when it was originally received
o It chunks the diff (because we don’t need all of it), then persist on separate
note_diff_files
o Thesame process happens when leaving a comment in a commit
2. When the diff is updated (push for instance):
o We use the Gitlab::Diff::PositionTracer to update the position of every diff note (if

needed)
m That’s exactly what makes a diff note outdated or not, or move it around if needed. If the
position reference stays in a revision behind the MR HEAD, we got an outdated note

Comments on diffs (caching layers)

1. Postgres: The commented diff file hunks
a. Why: As you might expect, in the past we were fetching diffs in a N+1 manner for
different revisions from Gitaly. In a MR with more than 100 comments, things started a
getting bit out of control.

i. Additionally, we started deleting diff files from DB after the MR got merged (table getting too
big), therefore, no way to reuse all existing persisted diffs.

b. How: Chunking the diff file (from top to commented line) and persisting the end result
to note_diff files
2. Redis: The highlighted diff file hunks
a. Why: Same as the standard MR diff file problem. It was spending way too much time
highlighting every diff hunk
b. How: Gitlab::DiscussionsDiff::HighlightCache

