
GraphQL Deep Dive - CREATE
2019-03-20

about.gitlab.com

https://about.gitlab.com

GraphQL - a new kind of API

● APIs are for for programmatic interaction with a web service
○ Many types of API (SOAP, REST, etc)
○ REpresentation State Transfer defined by Roy Fielding in

~2000
○ We currently have a Level Four Rest API™
○ Our frontend is increasingly a Vue-based web application for it
○ Central promise of REST is a universal client for every API

● GraphQL is a Level Zero Rest API™
○ Rejects ~20 years of Best Practice™
○ We give up on the single-client-for-everything aspiration
○ Anything (else) REST can do, GraphQL can do… better?
○ Focus on making an API that can serve dedicated clients better

● GraphQL optimizes for flexible queries, served efficiently
https://damienfremont.com/2017/11/23/rest-api-maturity-levels-from-0-to-5/

https://damienfremont.com/2017/11/23/rest-api-maturity-levels-from-0-to-5/

“Why would you do that?”

● 19th March: https://gitlab.com/gitlab-org/gitlab-ee/merge_requests/9760
● MR tries to improve performance of elasticsearch-backed commit search
● Existing REST API intervenes...

○ Fixed set of fields, returned for every request. Projections difficult to add
○ Compatibility guarantee, even though it’s likely nobody even uses these fields
○ We can’t actually tell if anyone even uses these fields
○ Hard to introduce lazy evaluation to resolve underlying N+1 issue

● If this were GraphQL…
○ Dynamic set of fields, selected only if client needs them. No need for projections
○ Living API - we could deprecate & remove these fields if we absolutely had to
○ Instrumentation can give us metrics on field use to inform deprecation decisions
○ Lazy evaluation built-in from the start

https://gitlab.com/gitlab-org/gitlab-ee/merge_requests/9760

GraphQL at Facebook and GitLab

● Started in 2012 following shift from web to native applications on mobile
● Address challenges encountered using REST: “Slow, Fragile, Tedious”

○ A great talk by Lee Byron: https://www.youtube.com/watch?v=F-OizdRJh1U
● React.js: open-sourced in 2012
● Relay + GraphQL: open-sourced in 2015. Specification + reference implementation
● We set a plan for adoption in 2017

○ https://gitlab.com/gitlab-org/gitlab-ce/issues/34754
● Issues with lack of patent grant in specification raised & resolved in 2017

○ https://github.com/facebook/graphql/issues/351
○ https://facebook.github.io/graphql/June2018/

● Alpha support merged into GitLab in 2018
○ https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/19008

● 12+ independent implementations by 2019.
● GraphQL foundation forming in March 2019
● Issue suggestions feature uses GraphQL!

https://www.youtube.com/watch?v=F-OizdRJh1U
https://gitlab.com/gitlab-org/gitlab-ce/issues/34754
https://github.com/facebook/graphql/issues/351
https://facebook.github.io/graphql/June2018/
https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/19008

GraphQL basics

● Fields
a. Everything is a field
b. Fields can take arguments

● Types
a. Every field has a type
b. Some built-in, some user-defined
c. QueryType and MutationType are special
d. Types (can) have fields, forming a graph

● Schema
a. Specifies available fields and types
b. Is a field. I wasn’t kidding about this bit

● Queries
a. Special mini-language, think SQL
b. Specifies the fields the client wants
c. Can be parameterized https://gitlab.com/-/graphql-explorer

https://gitlab.com/-/graphql-explorer

Example query - basic

● project is a field of QueryType, type Project
● gitlab_ce:project is the same, renamed
● fullPath is an argument selecting one project

○ Specify exactly the fields you want
● issue is a field of Project, type Issue

○ Specify exactly the fields you want
● Turned into JSON and transmitted to server
● Can load all 3 projects in one query(ish)

● Response is JSON
● Closely mirrors request semantics
● Only what I asked for is there
● Schema guarantees the server has what I want
● We can restrict the complexity of queries

https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/25737

Example query - pagination & caching

● issues is of type IssueConnection
● Includes pageInfo, edges
● Each edge has its own cursor too
● Support offset, keyset, etc, pagination
● endCursor to page forwards
● startCursor to page backwards
● REST API puts this into headers instead

● No REST, so normal caching is out
● We haven’t handled this yet
● GraphQL way:

○ Everything gets a GUID
○ Clients build their own caches

Example query - parameters and fragments

Example query - directives

● Make some fields conditional.
a. include if
b. include unless
c. skip if
d. skip unless

● They’re in the schema too
● Fewer, more-general, static queries

Example mutation

● We only have this one right now!
● Very RPC-like, which is by design
● Can run multiple mutations too
● We’ve got a lot to learn here

Subscriptions

● Websockety
● I can’t really dive deeply into this, I’ve never touched it
● Support for Relay and ActionCable out of the box, though \o/
● Historically, we’ve been unable to support long-lived connections to gitlab backend
● Move to Puma might unlock some of these capabilities

Authorization & Authentication

● Authentication
○ Similar to REST API
○ Supports cookies and token-based authentication. CSRF protection for cookie auth

● Authorization
○ Individual fields are authorizable
○ Efficiently authorizing arbitrarily complex queries can be a challenge
○ Requests can partially succeed, leaving unauthorized fields blank, or completely fail
○ You can query your own permissions for a field

Adding a new GraphQL endpoint

● Important files:

○ app/assets/javascripts/lib/graphql.js

○ app/assets/javascripts/**/*.graphql

○ app/controllers/graphql_controller.rb

○ app/graphql/gitlab_schema.rb

○ app/graphql/functions/*

○ app/graphql/mutations/*

○ app/graphql/resolvers/*

○ app/graphql/types/*

○ lib/gitlab/graphql/*

○ spec/graphql/*

○ spec/requests/api/graphql/*

● EE-only support is coming in 11.10

● You’re adding fields (of course)
● New top-level query fields in QueryType
● Otherwise added to another type
● Resolvers gather data without N+1 issues
● Functions are simple resolvers for a few fields
● Specs are composable, just like the fields

○ Request specs can be simpler
● Frontend defines a static query in .graphql file
● Applies it to the graphql client to do the thing
● Reimplement REST API in terms of GraphQL

● How does that search API look?
○ GitHub’s (sneaky peek)

● Ouch. OK, let’s look at file templates instead

● https://graphql.org/
● https://graphql-ruby.org/

https://gitlab.com/gitlab-org/gitlab-ee/issues/9391
https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/26340/diffs
https://developer.github.com/v4/query/#search
https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/26341
https://graphql.org/code/#ruby
https://graphql-ruby.org/

