
1

Pull Mirroring knowledge sharing session

Create Deep Dive
Tiago Botelho - Backend Engineer

18th of December 2018

about.gitlab.com

https://about.gitlab.com

2

Purpose

● Share my knowledge of the pull mirroring feature with the entire GitLab team
● Make this “deep dive session” a reference for everyone that might need to work with

pull mirroring in the future

3

Table of Contents

● Demo
● Workflow

○ High level lifecycle
○ Architecture

● Code dive
● Troubleshooting

○ Debugging Redis
○ Debugging Sidekiq workers
○ Useful methods

● Useful Links
● Questions

4

We will not talk about

● Mirroring through SSH
● Push mirroring
● Bi-directional mirroring

5

What is pull mirroring?

● Feature available in GitLab Starter/Bronze tier
● Automatically pulls changes from an external repository into a project in GitLab
● Makes an effort to keep healthy mirrors synchronized with the external repository every

30 minutes
● A user is also able to update more often by using the “Update now” functionality

○ Also handles common failure scenarios gracefully
● Very useful for teams that have a canonical version of their code in an external

repository and want to have a secondary version hosted on either GitLab.com or their
own GitLab instance
○ E.g: Users have their code hosted on an external code hosting service
○ They want to leverage our CI service
○ They set up a pull mirror that is kept in sync and runs all the pipelines that were configured for

that project

6

Demo

7

Key factors

● There are a few core concepts that we need to explain in order for pull mirroring to
make sense
○ Capacity
○ State transitions
○ State Management
○ Determining when a mirror update should be attempted again

● Key Metrics
○ Over 50k mirrors on GitLab.com
○ All of which were updated within the last 30 minutes

8

Capacity

● Redis Set
● Contains the IDs of projects that are about to or currently are being updated by a

Sidekiq worker
● The total capacity is a fixed number that can be configured by the GitLab instance

admin
● It is used as a way of limiting the amount of mirrors that get added in the Sidekiq queue
● The objective is to always fill that capacity with as many mirrors as we can

○ This way the workers will always have work to perform
○ Translates into more frequent updates

● It should be a number higher than the configured Sidekiq concurrency
○ Making the capacity a lot higher than the concurrency that Sidekiq enables won’t make a

difference and will just translate into a bigger Sidekiq queue
● Making the value lower than the Sidekiq’s concurrency will just translate into less

frequent updates

9

State transitions

● A mirror can be in one of the following five states:
○ None
○ Scheduled

■ Will be responsible for scheduling a worker to update the mirror
○ Started

■ Flags the time that the mirror started the update
○ Finished

■ Marks the time the mirror successfully finished
■ Will set the time when the mirror will get updated again

○ Failed
■ Marks the time the mirror finished unsuccessfully
■ Will increase the retry counter and set the time to update again

● The state machine is also useful to look for mirrors that are in inconsistent states
○ E.g: Mirrors in started state that don’t have a running Sidekiq job

10

State management

● There are three focal points that track the progress of the mirroring for each project
○ The Database

■ Holds information such as current status, job id, etc
○ Sidekiq

■ Provides the information about the mirroring queue
■ We are also able to know the status of each job in specific

○ Redis capacity set
■ Has the project IDs that are either in Sidekiq’s queue or already being performed by one of the workers

● Spreading the information about which projects are currently getting updated helps the
service become self-healing in some scenarios
○ Example: If a project in the Database says it has started

■ We can check if that job ID (stored in the Database) is still being performed or if it has finished already
■ This will tell us if Sidekiq was able to gracefully communicate with the DB in order to transition the

project onto it’s next stage

11

When should a mirror get scheduled?

● In order to determine when a mirror should be updated a formula was developed:

base_delay = (BACKOFF_PERIOD + rand(JITTER)) * (now() - last_update_started_at)

def set_next_execution_timestamp

 timestamp = Time.now

 retry_factor = [1, self.retry_count].max

 delay = [base_delay(timestamp), ::Gitlab::Mirror.min_delay].max

 delay = [delay * retry_factor, ::Gitlab::Mirror.max_delay].min

 self.next_execution_timestamp = timestamp + delay

end

● We want to penalise mirrors that fail often from running as frequently as healthy mirrors
● If a mirror reaches the maximum amount of retries, it will transition into a hard failed

state where it won’t get scheduled until a user takes action and solves the issue

12

Workflow

1. The scheduler worker will pick all the mirrors that have the next execution time < now()
2. It will schedule mirrors until there is no more capacity available or when there are no

more mirrors ready to be updated at the moment
3. After mirroring starts:

a. Fetch the changes from the provided remote URL
b. Update the respective branches with the new information

4. After updating the mirror:
a. Remove the project from the capacity list
b. Set the next execution time
c. Mirror finishes

i. Clear retry counter
d. Mirror fails

i. Retry counter gets incremented

13

Architecture

14

Questions?

15

Code Dive

Seeing what is behind the curtains

16

Questions?

17

Grafana

● Example of an unhealthy mirroring system (link)

https://dashboards.gitlab.net/d/_MKRXrSmk/pull-mirrors?orgId=1&from=1540014493723&to=1540033632508

18

Troubleshooting

● Always refer to the “project_mirror_data” table or the “ProjectImportState” model to
check the state of your mirrors such as:
○ last_error
○ retry_count
○ jid
○ last_updated_at
○ last_successful_update_at
○ next_execution_timestamp

● The DB table is called “project_mirror_data” for legacy reasons even though
ProjectImportState is used jointly by imports and forks as well

19

Troubleshooting

● Checking the available capacity
○ Gitlab::Mirror.available_capacity

○ Helps us debug situations where we might not be removing projects from the capacity

● Project.mirrors_to_sync(Time.now) will return all the mirrors ready to be picked for an

update

○ Along with Gitlab::Mirror.available_capacity we are able to see if we have enough mirrors to

completely fill the capacity up

20

Troubleshooting

● Check the status of the workers for each mirror in the scheduled/started state
○ ProjectImportState.with_status([:scheduled, :started]).where.not(jid: nil).select(:jid)

○ Gitlab::SidekiqStatus.job_status(jids)

● Retrieve the project IDs that are currently in the Redis set
○ Gitlab::Redis::SharedState.with { |r| r.smembers(Gitlab::Mirror::PULL_CAPACITY_KEY) }

○ Useful to look for projects that are stuck or with inconsistent information
○ Example: A finished/failed project ID should never be in that list

21

Troubleshooting

● Clear data inconsistencies
○ When the Database is inconsistent with Sidekiq

■ A project is started in the DB, but Sidekiq already considers it finished
■ StuckImportJobsWorker will look at the job ids maintained by the Gitlab::SidekiqStatus Redis key
■ Usually a timeout is the main cause for this scenario

○ When the capacity set is inconsistent with the DB and Sidekiq
■ A project is finished but the project id is still present in the capacity set
■ The only solution might be to remove that project ID from the capacity set
■ This is currently done manually (StuckImportJobsWorker will handle this in the future)
■ Gitlab::Redis::SharedState.with { |redis| redis.del(Gitlab::Mirror::PULL_CAPACITY_KEY) }

● Only use this when the capacity is completely blocked!

■ Gitlab::Mirror.decrement_capacity(project_id)
■ This is currently done manually (StuckImportJobsWorker will handle this in the future)

22

Grafana

● A healthy mirroring system

23

Useful links

● Pulling from a remote repository documentation
● StateMachine ActiveRecord module documentation
● Infrastructure Pull Mirroring Troubleshooting Guides

○ A merge request will be done to update these guides soon
● Dynamically determine mirror update interval based on total number of mirrors,

average update time, and available concurrency
● Grafana pull mirroring graphs

○ Contains valuable information about the health of the system
○ CPU %
○ Number of mirrors dude to update

● Feel free to ask any questions in #g_create that are pull mirror related

https://docs.gitlab.com/ee/workflow/repository_mirroring.html#pulling-from-a-remote-repository-starter
https://www.rubydoc.info/github/state-machines/state_machines-activerecord/StateMachines/Integrations/ActiveRecord
https://gitlab.com/gitlab-com/runbooks/blob/master/troubleshooting/large-pull-mirror-queue.md
https://gitlab.com/gitlab-org/gitlab-ee/issues/5258
https://gitlab.com/gitlab-org/gitlab-ee/issues/5258
https://dashboards.gitlab.net/d/_MKRXrSmk/pull-mirrors?orgId=1&from=1540014493723&to=1540033632508

24

Questions?

25

Thank you

Tiago Botelho - Backend Engineer
tiago@gitlab.com

