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Purpose

● Share my knowledge of the pull mirroring feature with the entire GitLab team
● Make this “deep dive session” a reference for everyone that might need to work with 

pull mirroring in the future
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We will not talk about

● Mirroring through SSH
● Push mirroring
● Bi-directional mirroring
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What is pull mirroring?

● Feature available in GitLab Starter/Bronze tier
● Automatically pulls changes from an external repository into a project in GitLab
● Makes an effort to keep healthy mirrors synchronized with the external repository every 

30 minutes
● A user is also able to update more often by using the “Update now” functionality

○ Also handles common failure scenarios gracefully
● Very useful for teams that have a canonical version of their code in an external 

repository and want to have a secondary version hosted on either GitLab.com or their 
own GitLab instance
○ E.g: Users have their code hosted on an external code hosting service
○ They want to leverage our CI service
○ They set up a pull mirror that is kept in sync and runs all the pipelines that were configured for 

that project
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Demo
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Key factors

● There are a few core concepts that we need to explain in order for pull mirroring to 
make sense
○ Capacity
○ State transitions
○ State Management
○ Determining when a mirror update should be attempted again

● Key Metrics
○ Over 50k mirrors on GitLab.com
○ All of which were updated within the last 30 minutes
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Capacity

● Redis Set
● Contains the IDs of projects that are about to or currently are being updated by a 

Sidekiq worker
● The total capacity is a fixed number that can be configured by the GitLab instance 

admin
● It is used as a way of limiting the amount of mirrors that get added in the Sidekiq queue
● The objective is to always fill that capacity with as many mirrors as we can

○ This way the workers will always have work to perform
○ Translates into more frequent updates

● It should be a number higher than the configured Sidekiq concurrency
○ Making the capacity a lot higher than the concurrency that Sidekiq enables won’t make a 

difference and will just translate into a bigger Sidekiq queue
● Making the value lower than the Sidekiq’s concurrency will just translate into less 

frequent updates
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State transitions

● A mirror can be in one of the following five states: 
○ None
○ Scheduled

■ Will be responsible for scheduling a worker to update the mirror
○ Started

■ Flags the time that the mirror started the update
○ Finished

■ Marks the time the mirror successfully finished
■ Will set the time when the mirror will get updated again

○ Failed
■ Marks the time the mirror finished unsuccessfully
■ Will increase the retry counter and set the time to update again

● The state machine is also useful to look for mirrors that are in inconsistent states
○ E.g: Mirrors in started state that don’t have a running Sidekiq job
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State management

● There are three focal points that track the progress of the mirroring for each project
○ The Database

■ Holds information such as current status, job id, etc
○ Sidekiq

■ Provides the information about the mirroring queue
■ We are also able to know the status of each job in specific

○ Redis capacity set
■ Has the project IDs that are either in Sidekiq’s queue or already being performed by one of the workers

● Spreading the information about which projects are currently getting updated helps the 
service become self-healing in some scenarios
○ Example: If a project in the Database says it has started

■ We can check if that job ID (stored in the Database) is still being performed or if it has finished already
■ This will tell us if Sidekiq was able to gracefully communicate with the DB in order to transition the 

project onto it’s next stage
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When should a mirror get scheduled?

● In order to determine when a mirror should be updated a formula was developed:

base_delay = (BACKOFF_PERIOD + rand(JITTER)) * (now() - last_update_started_at)

def set_next_execution_timestamp

  timestamp = Time.now

  retry_factor = [1, self.retry_count].max

  delay = [base_delay(timestamp), ::Gitlab::Mirror.min_delay].max

  delay = [delay * retry_factor, ::Gitlab::Mirror.max_delay].min

  self.next_execution_timestamp = timestamp + delay

end

● We want to penalise mirrors that fail often from running as frequently as healthy mirrors
● If a mirror reaches the maximum amount of retries, it will transition into a hard failed 

state where it won’t get scheduled until a user takes action and solves the issue
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Workflow

1. The scheduler worker will pick all the mirrors that have the next execution time < now()
2. It will schedule mirrors until there is no more capacity available or when there are no 

more mirrors ready to be updated at the moment
3. After mirroring starts:

a. Fetch the changes from the provided remote URL
b. Update the respective branches with the new information

4. After updating the mirror:
a. Remove the project from the capacity list
b. Set the next execution time
c. Mirror finishes

i. Clear retry counter
d. Mirror fails

i. Retry counter gets incremented
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Architecture
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Questions?
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Code Dive

Seeing what is behind the curtains
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Questions?
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Grafana

● Example of an unhealthy mirroring system (link)

https://dashboards.gitlab.net/d/_MKRXrSmk/pull-mirrors?orgId=1&from=1540014493723&to=1540033632508
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Troubleshooting

● Always refer to the “project_mirror_data” table or the “ProjectImportState” model to 
check the state of your mirrors such as:
○ last_error
○ retry_count
○ jid
○ last_updated_at
○ last_successful_update_at 
○ next_execution_timestamp

● The DB table is called “project_mirror_data” for legacy reasons even though 
ProjectImportState is used jointly by imports and forks as well



19

Troubleshooting

● Checking the available capacity
○ Gitlab::Mirror.available_capacity

○ Helps us debug situations where we might not be removing projects from the capacity

● Project.mirrors_to_sync(Time.now) will return all the mirrors ready to be picked for an 

update

○ Along with Gitlab::Mirror.available_capacity we are able to see if we have enough mirrors to 

completely fill the capacity up



20

Troubleshooting

● Check the status of the workers for each mirror in the scheduled/started state
○ ProjectImportState.with_status([:scheduled, :started]).where.not(jid: nil).select(:jid)

○ Gitlab::SidekiqStatus.job_status(jids)

● Retrieve the project IDs that are currently in the Redis set
○ Gitlab::Redis::SharedState.with { |r| r.smembers(Gitlab::Mirror::PULL_CAPACITY_KEY) }

○ Useful to look for projects that are stuck or with inconsistent information
○ Example: A finished/failed project ID should never be in that list
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Troubleshooting

● Clear data inconsistencies
○ When the Database is inconsistent with Sidekiq

■ A project is started in the DB, but Sidekiq already considers it finished
■ StuckImportJobsWorker will look at the job ids maintained by the Gitlab::SidekiqStatus  Redis key
■ Usually a timeout is the main cause for this scenario

○ When the capacity set is inconsistent with the DB and Sidekiq
■ A project is finished but the project id is still present in the capacity set
■ The only solution might be to remove that project ID from the capacity set
■ This is currently done manually (StuckImportJobsWorker will handle this in the future)
■ Gitlab::Redis::SharedState.with { |redis| redis.del(Gitlab::Mirror::PULL_CAPACITY_KEY) }

● Only use this when the capacity is completely blocked!

■ Gitlab::Mirror.decrement_capacity(project_id)
■ This is currently done manually (StuckImportJobsWorker will handle this in the future)
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Grafana

● A healthy mirroring system
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Useful links

● Pulling from a remote repository documentation
● StateMachine ActiveRecord module documentation
● Infrastructure Pull Mirroring Troubleshooting Guides

○ A merge request will be done to update these guides soon
● Dynamically determine mirror update interval based on total number of mirrors, 

average update time, and available concurrency
● Grafana pull mirroring graphs

○ Contains valuable information about the health of the system
○ CPU %
○ Number of mirrors dude to update

● Feel free to ask any questions in #g_create that are pull mirror related

https://docs.gitlab.com/ee/workflow/repository_mirroring.html#pulling-from-a-remote-repository-starter
https://www.rubydoc.info/github/state-machines/state_machines-activerecord/StateMachines/Integrations/ActiveRecord
https://gitlab.com/gitlab-com/runbooks/blob/master/troubleshooting/large-pull-mirror-queue.md
https://gitlab.com/gitlab-org/gitlab-ee/issues/5258
https://gitlab.com/gitlab-org/gitlab-ee/issues/5258
https://dashboards.gitlab.net/d/_MKRXrSmk/pull-mirrors?orgId=1&from=1540014493723&to=1540033632508
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Questions?
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Thank you

Tiago Botelho - Backend Engineer
tiago@gitlab.com


