
Git LFS Deep Dive - CREATE

Create Deep Dive
Francisco Javier López - Senior Backend Engineer

April 3, 2019

about.gitlab.com

https://about.gitlab.com

Table of Contents

● Git and Binary files
● What is Git LFS?
● Git LFS Pointers
● How Git LFS works
● Batch API
● File Locking API
● Questions

Git and Binary files

● Git doesn’t track binary files (audio, video, or image file) the same way it does with text
files

● A change in an binary file requires a new copy of the file in the repository
● It will make the history grow bigger and bigger
● Over time, this will decrease the speed to perform regular operations: clone, fetch, or

pull

What is Git LFS?

● Open source project
● Git extension that provides some tools to handle LFS files
● Sets the specification for LFS clients and servers
● Replaces binary files with (text) pointers
● Introduces the concept of LFS Server

○ Pointers -> Git repository
○ Binary files -> LFS Server

https://git-lfs.github.com/

Git LFS Pointers

version https://git-lfs.github.com/spec/v1
oid sha256:42c3dd42a403e9b474b4bab7f543a8dc92356b74829a009c36588acf7f3b79ea
size 1876

● Version: URL that identifies the file spec
● Oid: hashed unique identifier of the file

○ Sha256 is the only one supported at the moment
○ Identical files get always the same oid

● Size: file size in bytes

How Git LFS works

● The entry lfs is added to the repository config file
○ This entry stores the URL of the LFS server
○ By default the Git repository url will be used

● You select which files to track, ie. git lfs track “*.png”
○ Only works for new files.
○ To track existing files in the repository: git lfs migrate
○ A new file .gitattributes is added to the repository

● Also provides file locking capabilities
● How does it handle this process?

○ Through Git hooks that executes Git LFS commands under the hood

How Git LFS works (II)

Git Push Git Pull

Repository

LFS Server

Binary
files

Pointers

LFS Hook
Git Push

Repository LFS Server

Git Pull LFS Hook

Pull data
+

LFS Pointers

Binary
files

Pull data
+

Binary files

LFS Pointers

Authentication

● Git LFS uses HTTP Basic Authentication
○ For security reasons HTTPS is encouraged

● Where do these credentials come from?
○ From the Git remote or LFS url
○ Git credentials
○ When the repository remote is SSH

■ SSH connects to the repository
■ Command git-lfs-authenticate (handled by Gitlab Shell)

● Gitlab Shell connects to the internal API (/lfs_authenticate)
● A token is created with an expiration time inside

■ The following header with token is sent to the user

{
 "href": "https://gitlab.com/gitlab-org/foo",
 "header": {
 "Authorization": "Created token"
 },
 "expires_in": 1800
}

Authentication (II)

● The authentication is handled by Projects::GitHttpClientController
○ Checks if the authorization header is set
○ Calls Gitlab::Auth.find_for_git_client

■ Iterate over different authentication methods trying the login and password from the header
■ Returns a Gitlab::Auth::Result with the result

Batch API

Endpoints
● POST info/lfs/objects

○ Used to request the ability to transfer LFS files
■ If the user is not authorized no information about the LFS files will be sent

○ If everything ok, then the transfer will be through a different endpoint
○ Used for both uploading and downloading
○ Necessary headers:

Accept: application/vnd.git-lfs+json
Content-Type: application/vnd.git-lfs+json

Batch API (II)

Request
{
 "operation": "upload",
 "transfers": ["basic"],
 "ref": { "name": "refs/heads/master" },
 "objects": [
 {
 "oid": "11111111",
 "size": 5,
 }
]
}

● Operation: upload / download

● Transfers: List of the client transfer adapters (only

supported basic at the moment)

● Ref: optional

● Objects: Array of LFS objects

Batch API (III)

Response
{
 "transfer": "basic",
 "objects": [
 {
 "oid": "1111111",
 "size": 5,
 "authenticated": true,
 "actions": {
 "download": {
 "href": "https://gitlab.com",
 "header": {
 "Authorization": "1234"
 },
 "Expires_at": "2019-04-03T11:16:07Z",
 }
 }
 }
]
}

● Transfer: Client transfer adapter. Same from the
request

● Objects: List of objects:
○ Oid
○ Size
○ Authenticated: indicates whether the request

for the object is authenticated.
○ Actions:

■ Operation: upload/download
■ HRef: URL where the LFS file can be

accessed
■ Header: Optional hash to apply to the

request
■ Expires_in / Expires_at: indicates when

then transfer will expire

Batch API (IV). Gitlab LFS Downloads

RailsWorkhorse

POST http://gitlab.com/namespace/project/info/lfs/objects

Response {objects:[{oid:111, …, actions: { download: {href: http://gitlab.com/namespace/project/gitlab-lfs/objects/111}}}]} Returns also the
authorization headers

Projects::LfsApiController

GET http://gitlab.com/namespace/project/namespace/project/gitlab-lfs/objects/111
Projects::LfsStorageController

Headers: { “X-Sendfile”: “.../shared/lfs-object/2a/ab/7013f33….”}

Binary Data

Batch API (IV). Gitlab LFS Uploads

RailsWorkhorse

POST http://gitlab.com/namespace/project/info/lfs/objects

Response {objects:[{oid:111, …, actions: { upload: {href: http://gitlab.com/namespace/project/gitlab-lfs/objects/111/123}}}]}
Returns also the
authorization headers

Projects::LfsApiController

PUT http://gitlab.com/namespace/project/namespace/project/gitlab-lfs/objects/111/123

Projects::LfsStorageController#verify_upload

PUT http://gitlab.com/.../gitlab-lfs/objects/111/123/authorize

Starts Upload

PUT http://gitlab.com/.../gitlab-lfs/objects/111/123
Projects::LfsStorageController#verify_finalize

If the LFS object exists in the db,
it links it to the project, otherwise
it creates it

File Locking API

Endpoints
● POST info/lfs/locks

○ Creates a lock
○ Note: this is the first version of this API, so only single branch locking is supported

● GET info/lfs/locks
○ List all the locks

● POST info/lfs/locks/:id/unlock
○ Allows to remove locks

○ Through this endpoint locks from other uses can be removed if the param force=true

■ We ensure that only project maintainers can remove locks set by other users

File Locking API (II). Verify Locks

● POST info/lfs/locks/verify
○ Used to check if any existing lock can affect a Git push

● The response is splitted into ours and theirs
○ Ours: locks created by the user that makes the request
○ Theirs: locks owned by other users

● When pushing:
○ If any of the files matches any of the locks of the user (ours)

■ The locks will be listed at the end of the push
■ Git push succeeds

○ If any of the files matches any of the locks of the other users (theirs)
■ Git push halts

Locking support detected on remote "origin". Consider enabling it with:

$ git config lfs.http://gitlab.com/user/project.git/info/lfs.locksverify true

File Locking API (III). Verify Locks

Request
// POST https://gitlab.com/locks/verify

{

 "cursor": "optional lock cursor",

 "limit": 20,

 "ref": {

 "name": "refs/heads/master"

 }

}

● All params are optional

Response
{

 "ours": [

 {

 "id": "example-uuid",

 "path": "/foo/image.png",

 "locked_at": "2019-04-03T12:35:00+00:00",

 "owner": {

 "name": "User Name"

 }

 }

],

 "theirs": [],

 "next_cursor": "next lock ID",

}

Code Dive

Questions?

Thank you

Francisco Javier López - Senior Backend Engineer
fjlopez@gitlab.com

