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Git and Binary files

● Git doesn’t track binary files (audio, video, or image file) the same way it does with text 
files

● A change in an binary file requires a new copy of the file in the repository
● It will make the history grow bigger and  bigger
● Over time, this will decrease the speed to perform regular operations: clone, fetch, or 

pull



What is Git LFS?

● Open source project 
● Git extension that provides some tools to handle LFS files
● Sets the specification for LFS clients and servers
● Replaces binary files with (text) pointers
● Introduces the concept of LFS Server

○ Pointers -> Git repository
○ Binary files -> LFS Server

https://git-lfs.github.com/


Git LFS Pointers

version https://git-lfs.github.com/spec/v1
oid sha256:42c3dd42a403e9b474b4bab7f543a8dc92356b74829a009c36588acf7f3b79ea
size 1876

● Version: URL that identifies the file spec
● Oid: hashed unique identifier of the file

○ Sha256 is the only one supported at the moment
○ Identical files get always the same oid

● Size: file size in bytes 



How Git LFS works

● The entry lfs is added to the repository config file
○ This entry stores the URL of the LFS server
○ By default the Git repository url will be used

● You select which files to track, ie. git lfs track “*.png”
○ Only works for new files. 
○ To track existing files in the repository: git lfs migrate
○ A new file .gitattributes is added to the repository

● Also provides file locking capabilities
● How does it handle this process?

○ Through Git hooks that executes Git LFS commands under the hood



How Git LFS works (II)
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Authentication

● Git LFS uses HTTP Basic Authentication
○ For security reasons HTTPS is encouraged

● Where do these credentials come from?
○ From the Git remote or LFS url
○ Git credentials
○ When the repository remote is SSH

■ SSH connects to the repository
■ Command git-lfs-authenticate (handled by Gitlab Shell)

● Gitlab Shell connects to the internal API (/lfs_authenticate)
● A token is created with an expiration time inside

■ The following header with token is sent to the user

{
  "href": "https://gitlab.com/gitlab-org/foo",
  "header": {
    "Authorization": "Created token"
  },
  "expires_in": 1800
}



Authentication (II)

● The authentication is handled by Projects::GitHttpClientController
○ Checks if the authorization header is set
○ Calls Gitlab::Auth.find_for_git_client

■ Iterate over different authentication methods trying the login and password from the header
■ Returns a Gitlab::Auth::Result with the result



Batch API

Endpoints
● POST info/lfs/objects

○ Used to request the ability to transfer LFS files
■ If the user is not authorized no information about the LFS files will be sent 

○ If everything ok, then the transfer will be through a different endpoint
○ Used for both uploading and downloading
○ Necessary headers:

Accept: application/vnd.git-lfs+json
Content-Type: application/vnd.git-lfs+json



Batch API (II)

Request
{
  "operation": "upload",
  "transfers": [ "basic" ],
  "ref": { "name": "refs/heads/master" },
  "objects": [
    {
      "oid": "11111111",
      "size": 5,
    }
  ]
}

● Operation: upload / download

● Transfers: List of the client transfer adapters (only 

supported basic at the moment)

● Ref: optional

● Objects: Array  of LFS objects



Batch API (III)

Response
{
  "transfer": "basic",
  "objects": [
    {
      "oid": "1111111",
      "size": 5,
      "authenticated": true,
      "actions": {
        "download": {
          "href": "https://gitlab.com",
          "header": {
            "Authorization": "1234"
          },
          "Expires_at": "2019-04-03T11:16:07Z",
        }
      }
    }
  ]
}

● Transfer: Client transfer adapter. Same from the 
request

● Objects: List of objects:
○ Oid
○ Size
○ Authenticated: indicates whether the request 

for the object is authenticated.
○ Actions: 

■ Operation: upload/download 
■ HRef: URL where the LFS file can be 

accessed
■ Header: Optional hash to apply to the 

request
■ Expires_in / Expires_at: indicates when 

then transfer will expire



Batch API (IV). Gitlab LFS Downloads

RailsWorkhorse

POST http://gitlab.com/namespace/project/info/lfs/objects

Response {objects:[{oid:111, …, actions: { download: {href: http://gitlab.com/namespace/project/gitlab-lfs/objects/111}}}]} Returns also the 
authorization headers

Projects::LfsApiController

GET http://gitlab.com/namespace/project/namespace/project/gitlab-lfs/objects/111
Projects::LfsStorageController

Headers: { “X-Sendfile”: “.../shared/lfs-object/2a/ab/7013f33….”}

Binary Data



Batch API (IV). Gitlab LFS Uploads

RailsWorkhorse

POST http://gitlab.com/namespace/project/info/lfs/objects

Response {objects:[{oid:111, …, actions: { upload: {href: http://gitlab.com/namespace/project/gitlab-lfs/objects/111/123}}}]}
Returns also the 
authorization headers

Projects::LfsApiController

PUT http://gitlab.com/namespace/project/namespace/project/gitlab-lfs/objects/111/123

Projects::LfsStorageController#verify_upload

PUT http://gitlab.com/.../gitlab-lfs/objects/111/123/authorize

Starts Upload

PUT http://gitlab.com/.../gitlab-lfs/objects/111/123
Projects::LfsStorageController#verify_finalize

If the LFS object exists in the db, 
it links it to the project, otherwise 
it creates it



File Locking API

Endpoints
● POST info/lfs/locks

○ Creates a lock
○ Note: this is the first version of this API, so only single branch locking is supported

● GET info/lfs/locks
○ List all the locks

● POST info/lfs/locks/:id/unlock
○ Allows to remove locks

○ Through this endpoint locks from other uses can be removed if the param force=true

■ We ensure that only project maintainers can remove locks set by other users 



File Locking API (II). Verify Locks

● POST info/lfs/locks/verify
○ Used to check if any existing lock can affect a Git push

● The response is splitted into ours and theirs
○ Ours: locks created by the user that makes the request
○ Theirs: locks owned by other users

● When pushing:
○ If any of the files matches any of the locks of the user (ours)

■ The locks will be listed at the end of the push
■ Git push succeeds

○ If any of the files matches any of the locks of the other users (theirs)
■ Git push halts

Locking support detected on remote "origin". Consider enabling it with:

$ git config lfs.http://gitlab.com/user/project.git/info/lfs.locksverify true



File Locking API (III). Verify Locks

Request
// POST https://gitlab.com/locks/verify

{

  "cursor": "optional lock cursor",

  "limit": 20, 

  "ref": {

    "name": "refs/heads/master"

  }

}

● All  params are optional

Response
{

  "ours": [

    {

      "id": "example-uuid",

      "path": "/foo/image.png",

      "locked_at": "2019-04-03T12:35:00+00:00",

      "owner": {

        "name": "User Name"

      }

    }

  ],

  "theirs": [],

  "next_cursor": "next lock ID",

}



Code Dive



Questions?
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