Skip to content

Add database integration and caching layer

Problem to solve

The current architecture diagram shows database and caching components, but these are not yet implemented. The application needs persistent storage for rules and caching for performance optimization.

Proposal

Implement database integration and caching layer as shown in the architecture diagram:

Database Layer

  • Primary Database: PostgreSQL for rule storage and metadata
  • Schema Design: Tables for rules, workflows, execution history, and user management
  • Migrations: Database schema versioning and migration system
  • Connection Pooling: Efficient database connection management

Caching Layer

  • Cache System: Redis for high-performance caching
  • Cache Strategy: Rule caching, session management, and API response caching
  • Cache Invalidation: Smart cache invalidation on rule updates
  • Performance: Reduce database load and improve response times

Integration Points

  • Middleware: Database ORM integration with Flask
  • Backend: Optional database connectivity for rule persistence
  • Configuration: Environment-based database and cache configuration

Acceptance Criteria

Database Requirements

  • PostgreSQL database setup with proper schema
  • Database migration system implemented
  • Connection pooling configured
  • Database backup and recovery procedures
  • Environment-specific database configurations

Caching Requirements

  • Redis cache integration
  • Cache strategies for rules and API responses
  • Cache invalidation mechanisms
  • Cache monitoring and metrics
  • Fallback mechanisms when cache is unavailable

Integration Requirements

  • Flask-SQLAlchemy ORM integration
  • Database models for all entities
  • Redis client integration
  • Configuration management for different environments
  • Health checks for database and cache connectivity

Implementation Tasks

  1. Database Setup

    • Add PostgreSQL to docker-compose.yml
    • Create database schema and migrations
    • Configure Flask-SQLAlchemy
    • Add database models (Rules, Workflows, Users, ExecutionHistory)
    • Implement database seeding for development
  2. Caching Implementation

    • Add Redis to docker-compose.yml
    • Integrate Redis client in middleware
    • Implement caching decorators
    • Add cache warming strategies
    • Configure cache TTL and eviction policies
  3. ORM and Data Access

    • Create SQLAlchemy models
    • Implement repository pattern for data access
    • Add database query optimization
    • Create database utilities and helpers
    • Add transaction management
  4. Configuration and Environment

    • Add database connection strings
    • Configure different environments (dev, staging, prod)
    • Add environment variable management
    • Create database initialization scripts
    • Add monitoring and logging
  5. Docker and Deployment

    • Update Dockerfiles with database dependencies
    • Create docker-compose.yml for local development
    • Add database and cache to CI/CD pipeline
    • Configure production deployment scripts
    • Add backup and monitoring solutions

Further details

Database Schema Design

-- Example tables
CREATE TABLE rules (
    id SERIAL PRIMARY KEY,
    name VARCHAR(255) NOT NULL,
    description TEXT,
    rule_type VARCHAR(50) NOT NULL,
    conditions JSONB,
    actions JSONB,
    created_at TIMESTAMP DEFAULT NOW(),
    updated_at TIMESTAMP DEFAULT NOW()
);

CREATE TABLE rule_executions (
    id SERIAL PRIMARY KEY,
    rule_id INTEGER REFERENCES rules(id),
    status VARCHAR(50) NOT NULL,
    execution_time TIMESTAMP DEFAULT NOW(),
    result JSONB
);

Caching Strategy

  • Rule Cache: Cache frequently accessed rules (TTL: 1 hour)
  • API Response Cache: Cache API responses (TTL: 5 minutes)
  • Session Cache: User session management (TTL: 24 hours)
  • Execution Results: Cache recent execution results (TTL: 30 minutes)

Technology Stack

  • Database: PostgreSQL 15+
  • Cache: Redis 7+
  • ORM: SQLAlchemy with Flask-SQLAlchemy
  • Migrations: Flask-Migrate (Alembic)
  • Redis Client: redis-py

Links / references