Explore projects
-
Data Science / Machine Learning Pipeline component for training and deploying ML models using CI
Updated -
Scripta / escriptorium
MIT LicenseA project providing digital recognition of handwritten documents using machine learning techniques.
Updated -
-
Somewhat intuitive interface for data science and machine learning algorithms
Updated -
-
-
Updated
-
Deploy do projeto de TCC do MBA Machine Learning in Production. Kafka para a mensageria em Minikube.
Updated -
NCT-TSO-Public / NonRigid Data Generation Pipeline
GNU General Public License v3.0 onlyPipeline that simulates deformations of synthetic (or real) bodies for machine learning problems
Updated -
Stefan Weil / escriptorium
MIT LicenseA project providing digital recognition of handwritten documents using machine learning techniques.
Updated -
Cedar / petrifyML
GNU General Public License v3.0 or laterPython utilities for converting machine learning (ML) models from their custom formats into formats ensuring long-term stability, i.e. vanilla Python, vanilla C++ or ONNX, so they can be safely used forever without risk of framework breaking-changes. Supported are
sklearn, TMVA and MVAUtils boosted decision trees (for classification or regression) TMVA MLPs and lightweightNNsUpdated -
Nano Gennari / OLIM
GNU General Public License v3.0 or laterOpen Labeller for Iterative Machine learning
Updated -
En los últimos años ha habido un incremento en la implementación de técnicas de Machine Learning aplicadas a diferentes tópicos tanto dentro como fuera del mundo empresarial. En este trabajo se propone aplicar y evaluar tres técnicas de Sentiment Analysis a reviews en español de productos de Mercado Libre. Se intentará buscar modelos óptimos de Naive Bayes, Support Vector Machine y Long-Short Term Memory. También se experimentó con datasets reales de reviews positivas y negativas escritas por humanos, se crearon modelos y se los compararon entre si. Se ha encontrado las diferencias entre estos, y como se comparan al analizar reviews neutrales.
Updated -
Hassen Aguili / escriptorium
MIT LicenseA project providing digital recognition of handwritten documents using machine learning techniques.
Updated -
Batuhan Berk Başoğlu / Mini-Project-of-Machine-Learning
GNU General Public License v3.0 or laterMachine Learning Mini-Project made using Python by Batuhan Basoglu, Jared Tritt, Shaani Bellemare
Updated -
Jones Johnsson / Ecommerce Conversion Prediction
MIT LicenseA production-oriented Machine Learning pipeline that predicts whether an active user session will result in a purchase.
Model: XGBoost Classifier optimized for class imbalance.
Performance: ROC AUC 0.936 | F1-score 0.71 (at 0.30 threshold).
Key Features: Reproducible environment (uv), modular CLI for training/inference, leakage-free preprocessing, and SHAP interpretability analysis.
Data: UCI Online Shoppers Purchasing Intention Dataset.
Tech Stack: Python, XGBoost, Scikit-learn, Pandas, SHAP.
UpdatedUpdated -
Arthur Martins / ml-cfd-lecture
GNU General Public License v3.0 or laterLecture material for machine learning applied to computational fluid mechanics
Updated