Commit fecec8a3 authored by David M Johnson's avatar David M Johnson

Michigan bugfixing.

parent f21969eb
{
"id": "408f7ead-9b7d-49e2-b5f5-f36eabb0695d",
"id": "e5f15b7b-832f-404c-9d79-511c6c854653",
"schema": "https://metadata.datadrivendiscovery.org/schemas/v0/pipeline.json",
"created": "2019-06-17T03:34:14.195930Z",
"created": "2019-06-18T15:38:15.578853Z",
"inputs": [
{
"name": "inputs"
......@@ -21,7 +21,7 @@
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.dataset_to_dataframe.Common",
"name": "Extract a DataFrame from a Dataset",
"digest": "e557fc176af67913ed241dbe793cf986439157cfe9c4a12f1aafcba3c07b8b6f"
"digest": "4e971e251e548f1188c280c60f4e2f9a460865f21bcfd341114270bdafa4c4dc"
},
"arguments": {
"inputs": {
......@@ -42,7 +42,7 @@
"version": "0.5.0",
"python_path": "d3m.primitives.data_transformation.column_parser.DataFrameCommon",
"name": "Parses strings into their types",
"digest": "7e16e2b1e559690e221de471826d7d1cd36698bc5140dc00f3c7a6c6b711c3b2"
"digest": "b14b7bcd1a54ee658a7093658eb4b6c9a1b029698f981fec7ad26408a0b5cf64"
},
"arguments": {
"inputs": {
......@@ -60,10 +60,10 @@
"type": "PRIMITIVE",
"primitive": {
"id": "4503a4c6-42f7-45a1-a1d4-ed69699cf5e1",
"version": "0.2.0",
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon",
"name": "Extracts columns by semantic type",
"digest": "d4fa27a3e215b89d2231d344ec0202e1b8e41ad322deb79c68fd6ca673eae3f7"
"digest": "ea473cf02c17ae9d2610be746cb726d91991bc6e39c0c85d1b1550eacd1581be"
},
"arguments": {
"inputs": {
......@@ -92,7 +92,7 @@
"version": "0.1.0",
"python_path": "d3m.primitives.data_transformation.dataframe_to_ndarray.Common",
"name": "DataFrame to ndarray converter",
"digest": "32594c9a3c9bdc6315463fa8c169b18379b7fda7115354360de0d96298cf1960"
"digest": "766360bfe2af3b5a9f94ff3d5edbafb6ac8a334f56660bdddfdea70c7542c209"
},
"arguments": {
"inputs": {
......@@ -113,7 +113,7 @@
"version": "0.0.5",
"python_path": "d3m.primitives.clustering.ekss.Umich",
"name": "EKSS",
"digest": "3f604a51cbf1628cf39f37fae49c5e802cdb7493fa4116a495f5ade37676633b"
"digest": "5c30c739d338f3174bb8566efc6baf8395a4186c12e9c72b95afa19f23a76c29"
},
"arguments": {
"inputs": {
......@@ -140,7 +140,7 @@
"version": "0.1.0",
"python_path": "d3m.primitives.data_transformation.ndarray_to_dataframe.Common",
"name": "ndarray to Dataframe converter",
"digest": "dbc4bbf143ee01a74a5c3f54ec5daae1b938ee3600fa748ca3d5efe6b013ccb7"
"digest": "ec7afdcc833310158d8f4e7d09ae193655278a1ab4263b2233eb1146dd874ef7"
},
"arguments": {
"inputs": {
......@@ -161,7 +161,7 @@
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.construct_predictions.DataFrameCommon",
"name": "Construct pipeline predictions output",
"digest": "077921b0d6cee9bbda9494bc60c8b48f8287db8d0bff674056a7c9e5cc92ebb9"
"digest": "0c744dd6ea7eafb9c143f70b40452c6238bc6cab06a070d50868822f904388d3"
},
"arguments": {
"inputs": {
......@@ -180,5 +180,5 @@
]
}
],
"digest": "291368e8df383ecc8f11fb070993bdc3acf19b48968c020365995518f4aea8d1"
"digest": "2e0b3109e97d3cbb70e0d6511bedb67c30a523483fe95bdf4e4bdf13ee736d85"
}
\ No newline at end of file
......@@ -21,7 +21,7 @@
"installation": [
{
"type": "PIP",
"package_uri": "git+https://github.com/dvdmjohnson/d3m_michigan_primitives.git@200360b1a299664403b8d7d262c7cec6e29009b4#egg=spider"
"package_uri": "git+https://github.com/dvdmjohnson/d3m_michigan_primitives.git@1229b579b02a6c84b137f2d72c188da14af563c6#egg=spider"
},
{
"type": "UBUNTU",
......@@ -284,5 +284,5 @@
}
},
"structural_type": "spider.cluster.ekss.ekss.EKSS",
"digest": "3f604a51cbf1628cf39f37fae49c5e802cdb7493fa4116a495f5ade37676633b"
"digest": "5c30c739d338f3174bb8566efc6baf8395a4186c12e9c72b95afa19f23a76c29"
}
{
"id": "24dd407e-3825-4973-8b18-f634f7ca82c0",
"id": "0f67a73a-9df8-4455-930e-9f5c8b8e4c89",
"schema": "https://metadata.datadrivendiscovery.org/schemas/v0/pipeline.json",
"created": "2019-06-17T03:34:11.903041Z",
"created": "2019-06-18T15:38:13.288347Z",
"inputs": [
{
"name": "inputs"
......@@ -21,7 +21,7 @@
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.dataset_to_dataframe.Common",
"name": "Extract a DataFrame from a Dataset",
"digest": "e557fc176af67913ed241dbe793cf986439157cfe9c4a12f1aafcba3c07b8b6f"
"digest": "4e971e251e548f1188c280c60f4e2f9a460865f21bcfd341114270bdafa4c4dc"
},
"arguments": {
"inputs": {
......@@ -42,7 +42,7 @@
"version": "0.5.0",
"python_path": "d3m.primitives.data_transformation.column_parser.DataFrameCommon",
"name": "Parses strings into their types",
"digest": "7e16e2b1e559690e221de471826d7d1cd36698bc5140dc00f3c7a6c6b711c3b2"
"digest": "b14b7bcd1a54ee658a7093658eb4b6c9a1b029698f981fec7ad26408a0b5cf64"
},
"arguments": {
"inputs": {
......@@ -60,10 +60,10 @@
"type": "PRIMITIVE",
"primitive": {
"id": "4503a4c6-42f7-45a1-a1d4-ed69699cf5e1",
"version": "0.2.0",
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon",
"name": "Extracts columns by semantic type",
"digest": "d4fa27a3e215b89d2231d344ec0202e1b8e41ad322deb79c68fd6ca673eae3f7"
"digest": "ea473cf02c17ae9d2610be746cb726d91991bc6e39c0c85d1b1550eacd1581be"
},
"arguments": {
"inputs": {
......@@ -92,7 +92,7 @@
"version": "0.1.0",
"python_path": "d3m.primitives.data_transformation.dataframe_to_ndarray.Common",
"name": "DataFrame to ndarray converter",
"digest": "32594c9a3c9bdc6315463fa8c169b18379b7fda7115354360de0d96298cf1960"
"digest": "766360bfe2af3b5a9f94ff3d5edbafb6ac8a334f56660bdddfdea70c7542c209"
},
"arguments": {
"inputs": {
......@@ -113,7 +113,7 @@
"version": "0.0.5",
"python_path": "d3m.primitives.clustering.kss.Umich",
"name": "KSS",
"digest": "cf17cf35fc30f36a09d632a0aaaca3024a0977b03dfa491d92d0a60e599dd8f7"
"digest": "fdf32314fd3a56c5f5176ab10366be421865add54c4044ac10765b6d28aa5845"
},
"arguments": {
"inputs": {
......@@ -144,7 +144,7 @@
"version": "0.1.0",
"python_path": "d3m.primitives.data_transformation.ndarray_to_dataframe.Common",
"name": "ndarray to Dataframe converter",
"digest": "dbc4bbf143ee01a74a5c3f54ec5daae1b938ee3600fa748ca3d5efe6b013ccb7"
"digest": "ec7afdcc833310158d8f4e7d09ae193655278a1ab4263b2233eb1146dd874ef7"
},
"arguments": {
"inputs": {
......@@ -165,7 +165,7 @@
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.construct_predictions.DataFrameCommon",
"name": "Construct pipeline predictions output",
"digest": "077921b0d6cee9bbda9494bc60c8b48f8287db8d0bff674056a7c9e5cc92ebb9"
"digest": "0c744dd6ea7eafb9c143f70b40452c6238bc6cab06a070d50868822f904388d3"
},
"arguments": {
"inputs": {
......@@ -184,5 +184,5 @@
]
}
],
"digest": "b77a0bda973dfa2e70796e3fb874c7f6c57f533ec53c92985fa8cd64009b0203"
"digest": "64a31a4f6e930ab58f0f9a2e7423b6fd9c41c84a05b81e5d7242d09790050242"
}
\ No newline at end of file
......@@ -20,7 +20,7 @@
"installation": [
{
"type": "PIP",
"package_uri": "git+https://github.com/dvdmjohnson/d3m_michigan_primitives.git@200360b1a299664403b8d7d262c7cec6e29009b4#egg=spider"
"package_uri": "git+https://github.com/dvdmjohnson/d3m_michigan_primitives.git@1229b579b02a6c84b137f2d72c188da14af563c6#egg=spider"
},
{
"type": "UBUNTU",
......@@ -241,5 +241,5 @@
}
},
"structural_type": "spider.cluster.kss.kss.KSS",
"digest": "cf17cf35fc30f36a09d632a0aaaca3024a0977b03dfa491d92d0a60e599dd8f7"
"digest": "fdf32314fd3a56c5f5176ab10366be421865add54c4044ac10765b6d28aa5845"
}
{
"id": "a192e07a-2a27-42e6-8f0f-984d45e29c5c",
"id": "0348e5f1-f0b3-42bb-8921-af26db8cb4d6",
"schema": "https://metadata.datadrivendiscovery.org/schemas/v0/pipeline.json",
"created": "2019-06-17T03:34:16.317785Z",
"created": "2019-06-18T15:38:17.794620Z",
"inputs": [
{
"name": "inputs"
......@@ -21,7 +21,7 @@
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.dataset_to_dataframe.Common",
"name": "Extract a DataFrame from a Dataset",
"digest": "e557fc176af67913ed241dbe793cf986439157cfe9c4a12f1aafcba3c07b8b6f"
"digest": "4e971e251e548f1188c280c60f4e2f9a460865f21bcfd341114270bdafa4c4dc"
},
"arguments": {
"inputs": {
......@@ -42,7 +42,7 @@
"version": "0.5.0",
"python_path": "d3m.primitives.data_transformation.column_parser.DataFrameCommon",
"name": "Parses strings into their types",
"digest": "7e16e2b1e559690e221de471826d7d1cd36698bc5140dc00f3c7a6c6b711c3b2"
"digest": "b14b7bcd1a54ee658a7093658eb4b6c9a1b029698f981fec7ad26408a0b5cf64"
},
"arguments": {
"inputs": {
......@@ -60,10 +60,10 @@
"type": "PRIMITIVE",
"primitive": {
"id": "4503a4c6-42f7-45a1-a1d4-ed69699cf5e1",
"version": "0.2.0",
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon",
"name": "Extracts columns by semantic type",
"digest": "d4fa27a3e215b89d2231d344ec0202e1b8e41ad322deb79c68fd6ca673eae3f7"
"digest": "ea473cf02c17ae9d2610be746cb726d91991bc6e39c0c85d1b1550eacd1581be"
},
"arguments": {
"inputs": {
......@@ -92,7 +92,7 @@
"version": "0.1.0",
"python_path": "d3m.primitives.data_transformation.dataframe_to_ndarray.Common",
"name": "DataFrame to ndarray converter",
"digest": "32594c9a3c9bdc6315463fa8c169b18379b7fda7115354360de0d96298cf1960"
"digest": "766360bfe2af3b5a9f94ff3d5edbafb6ac8a334f56660bdddfdea70c7542c209"
},
"arguments": {
"inputs": {
......@@ -113,7 +113,7 @@
"version": "0.0.5",
"python_path": "d3m.primitives.clustering.ssc_admm.Umich",
"name": "SSC_ADMM",
"digest": "fb6d47bb400d1e33781541b92556e80238cfc7e5b787f37337f959b226111d92"
"digest": "f7621a0cad0d209adb11404aea6b0c271b40abcbf433003ca4b7a65988c37c0e"
},
"arguments": {
"inputs": {
......@@ -140,7 +140,7 @@
"version": "0.1.0",
"python_path": "d3m.primitives.data_transformation.ndarray_to_dataframe.Common",
"name": "ndarray to Dataframe converter",
"digest": "dbc4bbf143ee01a74a5c3f54ec5daae1b938ee3600fa748ca3d5efe6b013ccb7"
"digest": "ec7afdcc833310158d8f4e7d09ae193655278a1ab4263b2233eb1146dd874ef7"
},
"arguments": {
"inputs": {
......@@ -161,7 +161,7 @@
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.construct_predictions.DataFrameCommon",
"name": "Construct pipeline predictions output",
"digest": "077921b0d6cee9bbda9494bc60c8b48f8287db8d0bff674056a7c9e5cc92ebb9"
"digest": "0c744dd6ea7eafb9c143f70b40452c6238bc6cab06a070d50868822f904388d3"
},
"arguments": {
"inputs": {
......@@ -180,5 +180,5 @@
]
}
],
"digest": "edd4716009fcaac39e9eaa66e566e2eace51d1a564ac8b25ed25a432f1c39385"
"digest": "65df6f37e781d1d486ba6ab260b2580dec2099060a30ea91273d87148c8aa035"
}
\ No newline at end of file
......@@ -21,7 +21,7 @@
"installation": [
{
"type": "PIP",
"package_uri": "git+https://github.com/dvdmjohnson/d3m_michigan_primitives.git@200360b1a299664403b8d7d262c7cec6e29009b4#egg=spider"
"package_uri": "git+https://github.com/dvdmjohnson/d3m_michigan_primitives.git@1229b579b02a6c84b137f2d72c188da14af563c6#egg=spider"
},
{
"type": "UBUNTU",
......@@ -282,5 +282,5 @@
}
},
"structural_type": "spider.cluster.ssc_admm.ssc_admm.SSC_ADMM",
"digest": "fb6d47bb400d1e33781541b92556e80238cfc7e5b787f37337f959b226111d92"
"digest": "f7621a0cad0d209adb11404aea6b0c271b40abcbf433003ca4b7a65988c37c0e"
}
{
"id": "cf1b059a-42ee-4391-bc46-1febc1934abc",
"id": "9dd8ae9a-46ea-4974-aaee-9be4be0f8dbb",
"schema": "https://metadata.datadrivendiscovery.org/schemas/v0/pipeline.json",
"created": "2019-06-17T03:34:18.528589Z",
"created": "2019-06-18T15:38:20.075522Z",
"inputs": [
{
"name": "inputs"
......@@ -21,7 +21,7 @@
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.dataset_to_dataframe.Common",
"name": "Extract a DataFrame from a Dataset",
"digest": "e557fc176af67913ed241dbe793cf986439157cfe9c4a12f1aafcba3c07b8b6f"
"digest": "4e971e251e548f1188c280c60f4e2f9a460865f21bcfd341114270bdafa4c4dc"
},
"arguments": {
"inputs": {
......@@ -42,7 +42,7 @@
"version": "0.5.0",
"python_path": "d3m.primitives.data_transformation.column_parser.DataFrameCommon",
"name": "Parses strings into their types",
"digest": "7e16e2b1e559690e221de471826d7d1cd36698bc5140dc00f3c7a6c6b711c3b2"
"digest": "b14b7bcd1a54ee658a7093658eb4b6c9a1b029698f981fec7ad26408a0b5cf64"
},
"arguments": {
"inputs": {
......@@ -60,10 +60,10 @@
"type": "PRIMITIVE",
"primitive": {
"id": "4503a4c6-42f7-45a1-a1d4-ed69699cf5e1",
"version": "0.2.0",
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon",
"name": "Extracts columns by semantic type",
"digest": "d4fa27a3e215b89d2231d344ec0202e1b8e41ad322deb79c68fd6ca673eae3f7"
"digest": "ea473cf02c17ae9d2610be746cb726d91991bc6e39c0c85d1b1550eacd1581be"
},
"arguments": {
"inputs": {
......@@ -92,7 +92,7 @@
"version": "0.1.0",
"python_path": "d3m.primitives.data_transformation.dataframe_to_ndarray.Common",
"name": "DataFrame to ndarray converter",
"digest": "32594c9a3c9bdc6315463fa8c169b18379b7fda7115354360de0d96298cf1960"
"digest": "766360bfe2af3b5a9f94ff3d5edbafb6ac8a334f56660bdddfdea70c7542c209"
},
"arguments": {
"inputs": {
......@@ -113,7 +113,7 @@
"version": "0.0.5",
"python_path": "d3m.primitives.clustering.ssc_cvx.Umich",
"name": "SSC_CVX",
"digest": "14273cb74679d0f54792eeac8f091d6fed58e53e163e586006ca7cb34cebf67b"
"digest": "c331c55c1f2901d1159b573984b6a1fa50f74c29d7baf64c4788f3cb314ca671"
},
"arguments": {
"inputs": {
......@@ -140,7 +140,7 @@
"version": "0.1.0",
"python_path": "d3m.primitives.data_transformation.ndarray_to_dataframe.Common",
"name": "ndarray to Dataframe converter",
"digest": "dbc4bbf143ee01a74a5c3f54ec5daae1b938ee3600fa748ca3d5efe6b013ccb7"
"digest": "ec7afdcc833310158d8f4e7d09ae193655278a1ab4263b2233eb1146dd874ef7"
},
"arguments": {
"inputs": {
......@@ -161,7 +161,7 @@
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.construct_predictions.DataFrameCommon",
"name": "Construct pipeline predictions output",
"digest": "077921b0d6cee9bbda9494bc60c8b48f8287db8d0bff674056a7c9e5cc92ebb9"
"digest": "0c744dd6ea7eafb9c143f70b40452c6238bc6cab06a070d50868822f904388d3"
},
"arguments": {
"inputs": {
......@@ -180,5 +180,5 @@
]
}
],
"digest": "5ec141b20245135696e4715dbea4c535dcd329220b9fc9a37f4ff1e14f422dde"
"digest": "3db2065c7c6154739f0d44b17200903432178ee049b6fdda8d3eff4021594b39"
}
\ No newline at end of file
......@@ -21,7 +21,7 @@
"installation": [
{
"type": "PIP",
"package_uri": "git+https://github.com/dvdmjohnson/d3m_michigan_primitives.git@200360b1a299664403b8d7d262c7cec6e29009b4#egg=spider"
"package_uri": "git+https://github.com/dvdmjohnson/d3m_michigan_primitives.git@1229b579b02a6c84b137f2d72c188da14af563c6#egg=spider"
},
{
"type": "UBUNTU",
......@@ -295,5 +295,5 @@
}
},
"structural_type": "spider.cluster.ssc_cvx.ssc_cvx.SSC_CVX",
"digest": "14273cb74679d0f54792eeac8f091d6fed58e53e163e586006ca7cb34cebf67b"
"digest": "c331c55c1f2901d1159b573984b6a1fa50f74c29d7baf64c4788f3cb314ca671"
}
{
"id": "df6d5c9e-c4b6-4923-bcbe-a6e498b0d9ec",
"id": "d64b7dc7-9054-495b-a67e-55db18cad783",
"schema": "https://metadata.datadrivendiscovery.org/schemas/v0/pipeline.json",
"created": "2019-06-17T03:34:20.750332Z",
"created": "2019-06-18T15:38:22.185843Z",
"inputs": [
{
"name": "inputs"
......@@ -21,7 +21,7 @@
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.dataset_to_dataframe.Common",
"name": "Extract a DataFrame from a Dataset",
"digest": "e557fc176af67913ed241dbe793cf986439157cfe9c4a12f1aafcba3c07b8b6f"
"digest": "4e971e251e548f1188c280c60f4e2f9a460865f21bcfd341114270bdafa4c4dc"
},
"arguments": {
"inputs": {
......@@ -42,7 +42,7 @@
"version": "0.5.0",
"python_path": "d3m.primitives.data_transformation.column_parser.DataFrameCommon",
"name": "Parses strings into their types",
"digest": "7e16e2b1e559690e221de471826d7d1cd36698bc5140dc00f3c7a6c6b711c3b2"
"digest": "b14b7bcd1a54ee658a7093658eb4b6c9a1b029698f981fec7ad26408a0b5cf64"
},
"arguments": {
"inputs": {
......@@ -60,10 +60,10 @@
"type": "PRIMITIVE",
"primitive": {
"id": "4503a4c6-42f7-45a1-a1d4-ed69699cf5e1",
"version": "0.2.0",
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon",
"name": "Extracts columns by semantic type",
"digest": "d4fa27a3e215b89d2231d344ec0202e1b8e41ad322deb79c68fd6ca673eae3f7"
"digest": "ea473cf02c17ae9d2610be746cb726d91991bc6e39c0c85d1b1550eacd1581be"
},
"arguments": {
"inputs": {
......@@ -92,7 +92,7 @@
"version": "0.1.0",
"python_path": "d3m.primitives.data_transformation.dataframe_to_ndarray.Common",
"name": "DataFrame to ndarray converter",
"digest": "32594c9a3c9bdc6315463fa8c169b18379b7fda7115354360de0d96298cf1960"
"digest": "766360bfe2af3b5a9f94ff3d5edbafb6ac8a334f56660bdddfdea70c7542c209"
},
"arguments": {
"inputs": {
......@@ -113,7 +113,7 @@
"version": "0.0.5",
"python_path": "d3m.primitives.clustering.ssc_omp.Umich",
"name": "SSC_OMP",
"digest": "e406733acfb2bb4ef506673ad11ad5def9b74d09f162200aa6ca1a68344bc1e2"
"digest": "0e1130a2477a707f8b8e1cd47b33fa3707846be60c20a48e3013cc1b18b2d0d0"
},
"arguments": {
"inputs": {
......@@ -140,7 +140,7 @@
"version": "0.1.0",
"python_path": "d3m.primitives.data_transformation.ndarray_to_dataframe.Common",
"name": "ndarray to Dataframe converter",
"digest": "dbc4bbf143ee01a74a5c3f54ec5daae1b938ee3600fa748ca3d5efe6b013ccb7"
"digest": "ec7afdcc833310158d8f4e7d09ae193655278a1ab4263b2233eb1146dd874ef7"
},
"arguments": {
"inputs": {
......@@ -161,7 +161,7 @@
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.construct_predictions.DataFrameCommon",
"name": "Construct pipeline predictions output",
"digest": "077921b0d6cee9bbda9494bc60c8b48f8287db8d0bff674056a7c9e5cc92ebb9"
"digest": "0c744dd6ea7eafb9c143f70b40452c6238bc6cab06a070d50868822f904388d3"
},
"arguments": {
"inputs": {
......@@ -180,5 +180,5 @@
]
}
],
"digest": "3283ac47a3ba6ff3fdd99c49bf4cef35de0f5e50fd983288515fb34804efb797"
"digest": "1aa70c9b663c799b61c39ed2768dbb47fe5c01e3c6d2f0217d14da9155cdb626"
}
\ No newline at end of file
......@@ -21,7 +21,7 @@
"installation": [
{
"type": "PIP",
"package_uri": "git+https://github.com/dvdmjohnson/d3m_michigan_primitives.git@200360b1a299664403b8d7d262c7cec6e29009b4#egg=spider"
"package_uri": "git+https://github.com/dvdmjohnson/d3m_michigan_primitives.git@1229b579b02a6c84b137f2d72c188da14af563c6#egg=spider"
},
{
"type": "UBUNTU",
......@@ -252,5 +252,5 @@
}
},
"structural_type": "spider.cluster.ssc_omp.ssc_omp.SSC_OMP",
"digest": "e406733acfb2bb4ef506673ad11ad5def9b74d09f162200aa6ca1a68344bc1e2"
"digest": "0e1130a2477a707f8b8e1cd47b33fa3707846be60c20a48e3013cc1b18b2d0d0"
}
......@@ -21,7 +21,7 @@
"installation": [
{
"type": "PIP",
"package_uri": "git+https://github.com/dvdmjohnson/d3m_michigan_primitives.git@200360b1a299664403b8d7d262c7cec6e29009b4#egg=spider"
"package_uri": "git+https://github.com/dvdmjohnson/d3m_michigan_primitives.git@1229b579b02a6c84b137f2d72c188da14af563c6#egg=spider"
},
{
"type": "UBUNTU",
......@@ -285,5 +285,5 @@
}
},
"structural_type": "spider.dimensionality_reduction.go_dec.go_dec.GO_DEC",
"digest": "bccb140335a4ed120449503ea2dcbac2280d3ebe7674f63aaec1e2b393e5c6f2"
"digest": "1683c348a2666ab9fdcc3ae9e3cd5340f9a25f0e9c45dc1715e7eb0e6085baa5"
}
{
"id": "5c1b3194-4272-41c4-b07f-df1dee7203cb",
"id": "63ce11ab-3f02-4638-a2ef-9791aa97d570",
"schema": "https://metadata.datadrivendiscovery.org/schemas/v0/pipeline.json",
"created": "2019-06-17T03:34:05.885404Z",
"created": "2019-06-18T15:38:07.117641Z",
"inputs": [
{
"name": "inputs"
......@@ -9,7 +9,7 @@
],
"outputs": [
{
"data": "steps.8.produce",
"data": "steps.9.produce",
"name": "output"
}
],
......@@ -21,7 +21,7 @@
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.dataset_to_dataframe.Common",
"name": "Extract a DataFrame from a Dataset",
"digest": "e557fc176af67913ed241dbe793cf986439157cfe9c4a12f1aafcba3c07b8b6f"
"digest": "4e971e251e548f1188c280c60f4e2f9a460865f21bcfd341114270bdafa4c4dc"
},
"arguments": {
"inputs": {
......@@ -42,7 +42,7 @@
"version": "0.5.0",
"python_path": "d3m.primitives.data_transformation.column_parser.DataFrameCommon",
"name": "Parses strings into their types",
"digest": "7e16e2b1e559690e221de471826d7d1cd36698bc5140dc00f3c7a6c6b711c3b2"
"digest": "b14b7bcd1a54ee658a7093658eb4b6c9a1b029698f981fec7ad26408a0b5cf64"
},
"arguments": {
"inputs": {
......@@ -60,10 +60,10 @@
"type": "PRIMITIVE",
"primitive": {
"id": "4503a4c6-42f7-45a1-a1d4-ed69699cf5e1",
"version": "0.2.0",
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon",
"name": "Extracts columns by semantic type",
"digest": "d4fa27a3e215b89d2231d344ec0202e1b8e41ad322deb79c68fd6ca673eae3f7"
"digest": "ea473cf02c17ae9d2610be746cb726d91991bc6e39c0c85d1b1550eacd1581be"
},
"arguments": {
"inputs": {
......@@ -82,6 +82,46 @@
"data": [
"https://metadata.datadrivendiscovery.org/types/Attribute"
]
},
"exclude_columns": {
"type": "VALUE",
"data": [
0,
1,
6,
7
]
}
}
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "d016df89-de62-3c53-87ed-c06bb6a23cde",
"version": "2019.6.7",
"python_path": "d3m.primitives.data_cleaning.imputer.SKlearn",
"name": "sklearn.impute.SimpleImputer",
"digest": "d6902b0ef72b4cd6fc5f79054f7a534404c708e1244e94a2713a9dd525c78eed"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.2.produce"
}
},
"outputs": [
{
"id": "produce"
}
],
"hyperparams": {
"use_semantic_types": {
"type": "VALUE",
"data": true
},
"return_result": {
"type": "VALUE",
"data": "replace"
}
}
},
......@@ -89,10 +129,10 @@
"type": "PRIMITIVE",
"primitive": {
"id": "4503a4c6-42f7-45a1-a1d4-ed69699cf5e1",
"version": "0.2.0",
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon",
"name": "Extracts columns by semantic type",
"digest": "d4fa27a3e215b89d2231d344ec0202e1b8e41ad322deb79c68fd6ca673eae3f7"
"digest": "ea473cf02c17ae9d2610be746cb726d91991bc6e39c0c85d1b1550eacd1581be"
},
"arguments": {
"inputs": {
......@@ -121,12 +161,12 @@
"version": "0.1.0",
"python_path": "d3m.primitives.data_transformation.dataframe_to_ndarray.Common",
"name": "DataFrame to ndarray converter",
"digest": "32594c9a3c9bdc6315463fa8c169b18379b7fda7115354360de0d96298cf1960"
"digest": "766360bfe2af3b5a9f94ff3d5edbafb6ac8a334f56660bdddfdea70c7542c209"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.2.produce"
"data": "steps.3.produce"
}
},
"outputs": [
......@@ -142,12 +182,12 @@
"version": "0.0.5",
"python_path": "d3m.primitives.data_compression.grasta.Umich",
"name": "GRASTA",
"digest": "e39511990383491ff3786282b5476bff14a427a41cc855b48425ca8b4dbd2d7f"
"digest": "e9b689c0a05624cc6d02f9a8643c0fb2cc356b64de23e4451ce6afa94593e7a2"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.4.produce"