Commit f21969eb authored by Mitar's avatar Mitar

Merge branch 'v4.2.1' into 'master'

add pipelines

See merge request datadrivendiscovery/primitives!271
parents 3bd722d8 d3e93e71
......@@ -157,7 +157,7 @@
"type": "VALUE"
},
"n_estimators": {
"data": 600,
"data": 2000,
"type": "VALUE"
},
"n_jobs": {
......
{
"created": "2019-06-17T21:31:52.614265Z",
"id": "ta1-perspecta-pipeline-2019-1567-rf",
"inputs": [
{
"name": "inputs"
}
],
"outputs": [
{
"data": "steps.3.produce",
"name": "output predictions"
}
],
"schema": "https://metadata.datadrivendiscovery.org/schemas/v0/pipeline.json",
"steps": [
{
"arguments": {
"inputs": {
"data": "inputs.0",
"type": "CONTAINER"
}
},
"outputs": [
{
"id": "produce"
}
],
"primitive": {
"id": "4b42ce1e-9b98-4a25-b68e-fad13311eb65",
"name": "Extract a DataFrame from a Dataset",
"python_path": "d3m.primitives.data_transformation.dataset_to_dataframe.Common",
"version": "0.3.0"
},
"type": "PRIMITIVE"
},
{
"arguments": {
"inputs": {
"data": "steps.0.produce",
"type": "CONTAINER"
}
},
"hyperparams": {
"semantic_types": {
"data": [
"https://metadata.datadrivendiscovery.org/types/TrueTarget"
],
"type": "VALUE"
}
},
"outputs": [
{
"id": "produce"
}
],
"primitive": {
"id": "4503a4c6-42f7-45a1-a1d4-ed69699cf5e1",
"name": "Extracts columns by semantic type",
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon",
"version": "0.2.0"
},
"type": "PRIMITIVE"
},
{
"arguments": {
"inputs": {
"data": "steps.0.produce",
"type": "CONTAINER"
},
"outputs": {
"data": "steps.1.produce",
"type": "CONTAINER"
}
},
"hyperparams": {
"add_index_columns": {
"data": false,
"type": "VALUE"
},
"bootstrap": {
"data": true,
"type": "VALUE"
},
"class_weight": {
"data": {
"case": "str",
"value": "balanced"
},
"type": "VALUE"
},
"criterion": {
"data": "gini",
"type": "VALUE"
},
"error_on_no_input": {
"data": true,
"type": "VALUE"
},
"exclude_input_columns": {
"data": [],
"type": "VALUE"
},
"exclude_output_columns": {
"data": [],
"type": "VALUE"
},
"max_depth": {
"data": {
"case": "int",
"value": 10
},
"type": "VALUE"
},
"max_features": {
"data": {
"case": "calculated",
"value": "auto"
},
"type": "VALUE"
},
"max_leaf_nodes": {
"data": {
"case": "none",
"value": null
},
"type": "VALUE"
},
"min_impurity_decrease": {
"data": 0.0,
"type": "VALUE"
},
"min_samples_leaf": {
"data": {
"case": "absolute",
"value": 1
},
"type": "VALUE"
},
"min_samples_split": {
"data": {
"case": "absolute",
"value": 2
},
"type": "VALUE"
},
"min_weight_fraction_leaf": {
"data": 0,
"type": "VALUE"
},
"n_cv": {
"data": {
"case": "int",
"value": 5
},
"type": "VALUE"
},
"n_estimators": {
"data": 60,
"type": "VALUE"
},
"n_jobs": {
"data": {
"case": "limit",
"value": 8
},
"type": "VALUE"
},
"oob_score": {
"data": false,
"type": "VALUE"
},
"regressor_type": {
"data": "linear",
"type": "VALUE"
},
"return_result": {
"data": "new",
"type": "VALUE"
},
"use_input_columns": {
"data": [],
"type": "VALUE"
},
"use_output_columns": {
"data": [],
"type": "VALUE"
},
"use_semantic_types": {
"data": false,
"type": "VALUE"
},
"warm_start": {
"data": false,
"type": "VALUE"
}
},
"outputs": [
{
"id": "produce"
}
],
"primitive": {
"id": "943a4b34-89c5-4296-bc1c-267f4887e2f9",
"name": "lupi_rfsel.LupiRFSelClassifier",
"python_path": "d3m.primitives.classification.lupi_rfsel.LupiRFSelClassifier",
"version": "v4.2.0"
},
"type": "PRIMITIVE"
},
{
"arguments": {
"inputs": {
"data": "steps.2.produce",
"type": "CONTAINER"
},
"reference": {
"data": "steps.0.produce",
"type": "CONTAINER"
}
},
"outputs": [
{
"id": "produce"
}
],
"primitive": {
"id": "8d38b340-f83f-4877-baaa-162f8e551736",
"name": "Construct pipeline predictions output",
"python_path": "d3m.primitives.data_transformation.construct_predictions.DataFrameCommon",
"version": "0.3.0"
},
"type": "PRIMITIVE"
}
]
}
{
"problem": "1567_poker_hand_problem",
"full_inputs": ["1567_poker_hand_dataset"],
"train_inputs": ["1567_poker_hand_dataset_TRAIN"],
"test_inputs": ["1567_poker_hand_dataset_TEST"],
"score_inputs": ["1567_poker_hand_dataset_SCORE"]
}
{
"created": "2019-06-17T21:27:27.220508Z",
"id": "ta1-perspecta-pipeline-2019-186-rf",
"inputs": [
{
"name": "inputs"
}
],
"outputs": [
{
"data": "steps.3.produce",
"name": "output predictions"
}
],
"schema": "https://metadata.datadrivendiscovery.org/schemas/v0/pipeline.json",
"steps": [
{
"arguments": {
"inputs": {
"data": "inputs.0",
"type": "CONTAINER"
}
},
"outputs": [
{
"id": "produce"
}
],
"primitive": {
"id": "4b42ce1e-9b98-4a25-b68e-fad13311eb65",
"name": "Extract a DataFrame from a Dataset",
"python_path": "d3m.primitives.data_transformation.dataset_to_dataframe.Common",
"version": "0.3.0"
},
"type": "PRIMITIVE"
},
{
"arguments": {
"inputs": {
"data": "steps.0.produce",
"type": "CONTAINER"
}
},
"hyperparams": {
"semantic_types": {
"data": [
"https://metadata.datadrivendiscovery.org/types/TrueTarget"
],
"type": "VALUE"
}
},
"outputs": [
{
"id": "produce"
}
],
"primitive": {
"id": "4503a4c6-42f7-45a1-a1d4-ed69699cf5e1",
"name": "Extracts columns by semantic type",
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon",
"version": "0.2.0"
},
"type": "PRIMITIVE"
},
{
"arguments": {
"inputs": {
"data": "steps.0.produce",
"type": "CONTAINER"
},
"outputs": {
"data": "steps.1.produce",
"type": "CONTAINER"
}
},
"hyperparams": {
"add_index_columns": {
"data": false,
"type": "VALUE"
},
"bootstrap": {
"data": true,
"type": "VALUE"
},
"class_weight": {
"data": {
"case": "str",
"value": "balanced"
},
"type": "VALUE"
},
"criterion": {
"data": "gini",
"type": "VALUE"
},
"error_on_no_input": {
"data": true,
"type": "VALUE"
},
"exclude_input_columns": {
"data": [],
"type": "VALUE"
},
"exclude_output_columns": {
"data": [],
"type": "VALUE"
},
"max_depth": {
"data": {
"case": "int",
"value": 10
},
"type": "VALUE"
},
"max_features": {
"data": {
"case": "calculated",
"value": "auto"
},
"type": "VALUE"
},
"max_leaf_nodes": {
"data": {
"case": "none",
"value": null
},
"type": "VALUE"
},
"min_impurity_decrease": {
"data": 0.0,
"type": "VALUE"
},
"min_samples_leaf": {
"data": {
"case": "absolute",
"value": 1
},
"type": "VALUE"
},
"min_samples_split": {
"data": {
"case": "absolute",
"value": 2
},
"type": "VALUE"
},
"min_weight_fraction_leaf": {
"data": 0,
"type": "VALUE"
},
"n_cv": {
"data": {
"case": "int",
"value": 5
},
"type": "VALUE"
},
"n_estimators": {
"data": 600,
"type": "VALUE"
},
"n_jobs": {
"data": {
"case": "limit",
"value": 4
},
"type": "VALUE"
},
"oob_score": {
"data": false,
"type": "VALUE"
},
"regressor_type": {
"data": "linear",
"type": "VALUE"
},
"return_result": {
"data": "new",
"type": "VALUE"
},
"use_input_columns": {
"data": [],
"type": "VALUE"
},
"use_output_columns": {
"data": [],
"type": "VALUE"
},
"use_semantic_types": {
"data": false,
"type": "VALUE"
},
"warm_start": {
"data": false,
"type": "VALUE"
}
},
"outputs": [
{
"id": "produce"
}
],
"primitive": {
"id": "943a4b34-89c5-4296-bc1c-267f4887e2f9",
"name": "lupi_rfsel.LupiRFSelClassifier",
"python_path": "d3m.primitives.classification.lupi_rfsel.LupiRFSelClassifier",
"version": "v4.2.0"
},
"type": "PRIMITIVE"
},
{
"arguments": {
"inputs": {
"data": "steps.2.produce",
"type": "CONTAINER"
},
"reference": {
"data": "steps.0.produce",
"type": "CONTAINER"
}
},
"outputs": [
{
"id": "produce"
}
],
"primitive": {
"id": "8d38b340-f83f-4877-baaa-162f8e551736",
"name": "Construct pipeline predictions output",
"python_path": "d3m.primitives.data_transformation.construct_predictions.DataFrameCommon",
"version": "0.3.0"
},
"type": "PRIMITIVE"
}
]
}
{
"problem": "LL0_186_braziltourism_problem",
"full_inputs": ["LL0_186_braziltourism_dataset"],
"train_inputs": ["LL0_186_braziltourism_dataset_TRAIN"],
"test_inputs": ["LL0_186_braziltourism_dataset_TEST"],
"score_inputs": ["LL0_186_braziltourism_dataset_SCORE"]
}
{
"created": "2019-06-17T21:18:20.168115Z",
"id": "ta1-perspecta-pipeline-2019-ll0_1100-rf",
"inputs": [
{
"name": "inputs"
}
],
"outputs": [
{
"data": "steps.3.produce",
"name": "output predictions"
}
],
"schema": "https://metadata.datadrivendiscovery.org/schemas/v0/pipeline.json",
"steps": [
{
"arguments": {
"inputs": {
"data": "inputs.0",
"type": "CONTAINER"
}
},
"outputs": [
{
"id": "produce"
}
],
"primitive": {
"id": "4b42ce1e-9b98-4a25-b68e-fad13311eb65",
"name": "Extract a DataFrame from a Dataset",
"python_path": "d3m.primitives.data_transformation.dataset_to_dataframe.Common",
"version": "0.3.0"
},
"type": "PRIMITIVE"
},
{
"arguments": {
"inputs": {
"data": "steps.0.produce",
"type": "CONTAINER"
}
},
"hyperparams": {
"semantic_types": {
"data": [
"https://metadata.datadrivendiscovery.org/types/TrueTarget"
],
"type": "VALUE"
}
},
"outputs": [
{
"id": "produce"
}
],
"primitive": {
"id": "4503a4c6-42f7-45a1-a1d4-ed69699cf5e1",
"name": "Extracts columns by semantic type",
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon",
"version": "0.2.0"
},
"type": "PRIMITIVE"
},
{
"arguments": {
"inputs": {
"data": "steps.0.produce",
"type": "CONTAINER"
},
"outputs": {
"data": "steps.1.produce",
"type": "CONTAINER"
}
},
"hyperparams": {
"add_index_columns": {
"data": false,
"type": "VALUE"
},
"bootstrap": {
"data": true,
"type": "VALUE"
},
"class_weight": {
"data": {
"case": "str",
"value": "balanced"
},
"type": "VALUE"
},
"criterion": {
"data": "gini",
"type": "VALUE"
},
"error_on_no_input": {
"data": true,
"type": "VALUE"
},
"exclude_input_columns": {
"data": [],
"type": "VALUE"
},
"exclude_output_columns": {
"data": [],
"type": "VALUE"
},
"max_depth": {
"data": {
"case": "int",
"value": 15
},
"type": "VALUE"
},
"max_features": {
"data": {
"case": "calculated",
"value": "auto"
},
"type": "VALUE"
},