Commit bc5b40d3 authored by Jarod Wang's avatar Jarod Wang Committed by Mitar

add fastlvm pipelines

parent 30419529
{
"id": "157f962c-3f42-423e-b479-d985474162d9",
"schema": "https://metadata.datadrivendiscovery.org/schemas/v0/pipeline.json",
"created": "2019-04-12T17:03:46.558669Z",
"context": "EVALUATION",
"inputs": [
{
"name": "dataset inputs"
}
],
"outputs": [
{
"data": "steps.6.produce",
"name": "output predictions"
}
],
"steps": [
{
"type": "PRIMITIVE",
"primitive": {
"id": "4b42ce1e-9b98-4a25-b68e-fad13311eb65",
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.dataset_to_dataframe.Common",
"name": "Extract a DataFrame from a Dataset",
"digest": "a2b1b7251f9a967770a3052e655cb636343869721e4a90d560f04d46a6772bdb"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "inputs.0"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "d510cb7a-1782-4f51-b44c-58f0236e47c7",
"version": "0.5.0",
"python_path": "d3m.primitives.data_transformation.column_parser.DataFrameCommon",
"name": "Parses strings into their types",
"digest": "e55192bd0c8db9e2775f91c8286144f14d82e23e9a3e0b1def8389f7bd2d3314"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.0.produce"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "4503a4c6-42f7-45a1-a1d4-ed69699cf5e1",
"version": "0.2.0",
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon",
"name": "Extracts columns by semantic type",
"digest": "d7bc4d350f0af6458f9f4329d736e21a0b8066484fa2a20beef8777585df85ed"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.1.produce"
}
},
"outputs": [
{
"id": "produce"
}
],
"hyperparams": {
"semantic_types": {
"type": "VALUE",
"data": [
"https://metadata.datadrivendiscovery.org/types/Attribute"
]
},
"exclude_columns": {
"type": "VALUE",
"data": [
1,
17,
18
]
}
}
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "d016df89-de62-3c53-87ed-c06bb6a23cde",
"version": "v2019.4.4",
"python_path": "d3m.primitives.data_cleaning.imputer.SKlearn",
"name": "sklearn.impute.SimpleImputer",
"digest": "d7d1c2bd5b669ac4a01334504f92f970fab4bb10e62755a2081f843ae8829796"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.2.produce"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "4503a4c6-42f7-45a1-a1d4-ed69699cf5e1",
"version": "0.2.0",
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon",
"name": "Extracts columns by semantic type",
"digest": "d7bc4d350f0af6458f9f4329d736e21a0b8066484fa2a20beef8777585df85ed"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.1.produce"
}
},
"outputs": [
{
"id": "produce"
}
],
"hyperparams": {
"semantic_types": {
"type": "VALUE",
"data": [
"https://metadata.datadrivendiscovery.org/types/SuggestedTarget"
]
}
}
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "e770fae6-da6d-45f8-86bf-38a121a4e65a",
"version": "3.0.0",
"python_path": "d3m.primitives.classification.cover_tree.Fastlvm",
"name": "Nearest Neighbor Classification with Cover Trees",
"digest": "3e4440aa2e5c29384d60a61d90af0b7af780cb65cd5c106def15a4b093f9c4ec"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.3.produce"
},
"outputs": {
"type": "CONTAINER",
"data": "steps.4.produce"
}
},
"outputs": [
{
"id": "produce"
}
],
"hyperparams": {
"k": {
"type": "VALUE",
"data": 1
}
}
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "8d38b340-f83f-4877-baaa-162f8e551736",
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.construct_predictions.DataFrameCommon",
"name": "Construct pipeline predictions output",
"digest": "d75bfcfcfc2bc4a8734ba22b7fd1b8cbb3e54d7bbaa1b190c6347ecde096f16b"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.5.produce"
},
"reference": {
"type": "CONTAINER",
"data": "steps.0.produce"
}
},
"outputs": [
{
"id": "produce"
}
]
}
],
"digest": "67ba45507789277b190333856eebd5bcd85359e543336cdc7b0d05845aba9e6b",
"pipeline_rank": "1"
}
\ No newline at end of file
{
"problem": "185_baseball_problem",
"full_inputs": [
"185_baseball_dataset"
],
"train_inputs": [
"185_baseball_dataset_TRAIN"
],
"test_inputs": [
"185_baseball_dataset_TEST"
],
"score_inputs": [
"185_baseball_dataset_SCORE"
]
}
\ No newline at end of file
{
"id": "f6f8017d-080f-4b88-8dfb-a6b578f96bea",
"schema": "https://metadata.datadrivendiscovery.org/schemas/v0/pipeline.json",
"created": "2019-04-12T18:22:22.773009Z",
"context": "EVALUATION",
"inputs": [
{
"name": "dataset inputs"
}
],
"outputs": [
{
"data": "steps.5.produce",
"name": "output predictions"
}
],
"steps": [
{
"type": "PRIMITIVE",
"primitive": {
"id": "4b42ce1e-9b98-4a25-b68e-fad13311eb65",
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.dataset_to_dataframe.Common",
"name": "Extract a DataFrame from a Dataset",
"digest": "a2b1b7251f9a967770a3052e655cb636343869721e4a90d560f04d46a6772bdb"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "inputs.0"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "d510cb7a-1782-4f51-b44c-58f0236e47c7",
"version": "0.5.0",
"python_path": "d3m.primitives.data_transformation.column_parser.DataFrameCommon",
"name": "Parses strings into their types",
"digest": "e55192bd0c8db9e2775f91c8286144f14d82e23e9a3e0b1def8389f7bd2d3314"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.0.produce"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "4503a4c6-42f7-45a1-a1d4-ed69699cf5e1",
"version": "0.2.0",
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon",
"name": "Extracts columns by semantic type",
"digest": "d7bc4d350f0af6458f9f4329d736e21a0b8066484fa2a20beef8777585df85ed"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.1.produce"
}
},
"outputs": [
{
"id": "produce"
}
],
"hyperparams": {
"semantic_types": {
"type": "VALUE",
"data": [
"https://metadata.datadrivendiscovery.org/types/Attribute"
]
},
"exclude_columns": {
"type": "VALUE",
"data": [
65
]
}
}
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "d016df89-de62-3c53-87ed-c06bb6a23cde",
"version": "v2019.4.4",
"python_path": "d3m.primitives.data_cleaning.imputer.SKlearn",
"name": "sklearn.impute.SimpleImputer",
"digest": "d7d1c2bd5b669ac4a01334504f92f970fab4bb10e62755a2081f843ae8829796"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.2.produce"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "49af9397-d9a2-450f-93eb-c3b631ba6646",
"version": "3.0.0",
"python_path": "d3m.primitives.clustering.gmm.Fastlvm",
"name": "Gaussian Mixture Models",
"digest": "c49f20936a972b6f0200d22c141c7bd0952c6a34f05890b0401c046d1014d713"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.3.produce"
}
},
"outputs": [
{
"id": "produce"
}
],
"hyperparams": {
"k": {
"type": "VALUE",
"data": 100
},
"initialization": {
"type": "VALUE",
"data": "kmeanspp"
}
}
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "8d38b340-f83f-4877-baaa-162f8e551736",
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.construct_predictions.DataFrameCommon",
"name": "Construct pipeline predictions output",
"digest": "d75bfcfcfc2bc4a8734ba22b7fd1b8cbb3e54d7bbaa1b190c6347ecde096f16b"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.4.produce"
},
"reference": {
"type": "CONTAINER",
"data": "steps.0.produce"
}
},
"outputs": [
{
"id": "produce"
}
]
}
],
"digest": "40df6cb5d13c7f87d46cde22a24202ba7097a9ed97bda5050ad70486fdf0e2de",
"pipeline_rank": "1"
}
\ No newline at end of file
{
"problem": "1491_one_hundred_plants_margin_clust_problem",
"full_inputs": [
"1491_one_hundred_plants_margin_clust_dataset"
],
"train_inputs": [
"1491_one_hundred_plants_margin_clust_dataset_TRAIN"
],
"test_inputs": [
"1491_one_hundred_plants_margin_clust_dataset_TEST"
],
"score_inputs": [
"1491_one_hundred_plants_margin_clust_dataset_SCORE"
]
}
{
"id": "f3ac5b88-decf-4dd1-bee7-aedb4c1950a6",
"schema": "https://metadata.datadrivendiscovery.org/schemas/v0/pipeline.json",
"created": "2019-04-12T18:33:08.202953Z",
"context": "EVALUATION",
"inputs": [
{
"name": "dataset inputs"
}
],
"outputs": [
{
"data": "steps.5.produce",
"name": "output predictions"
}
],
"steps": [
{
"type": "PRIMITIVE",
"primitive": {
"id": "4b42ce1e-9b98-4a25-b68e-fad13311eb65",
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.dataset_to_dataframe.Common",
"name": "Extract a DataFrame from a Dataset",
"digest": "a2b1b7251f9a967770a3052e655cb636343869721e4a90d560f04d46a6772bdb"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "inputs.0"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "d510cb7a-1782-4f51-b44c-58f0236e47c7",
"version": "0.5.0",
"python_path": "d3m.primitives.data_transformation.column_parser.DataFrameCommon",
"name": "Parses strings into their types",
"digest": "e55192bd0c8db9e2775f91c8286144f14d82e23e9a3e0b1def8389f7bd2d3314"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.0.produce"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "4503a4c6-42f7-45a1-a1d4-ed69699cf5e1",
"version": "0.2.0",
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon",
"name": "Extracts columns by semantic type",
"digest": "d7bc4d350f0af6458f9f4329d736e21a0b8066484fa2a20beef8777585df85ed"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.1.produce"
}
},
"outputs": [
{
"id": "produce"
}
],
"hyperparams": {
"semantic_types": {
"type": "VALUE",
"data": [
"https://metadata.datadrivendiscovery.org/types/Attribute"
]
},
"exclude_columns": {
"type": "VALUE",
"data": [
65
]
}
}
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "d016df89-de62-3c53-87ed-c06bb6a23cde",
"version": "v2019.4.4",
"python_path": "d3m.primitives.data_cleaning.imputer.SKlearn",
"name": "sklearn.impute.SimpleImputer",
"digest": "d7d1c2bd5b669ac4a01334504f92f970fab4bb10e62755a2081f843ae8829796"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.2.produce"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "66c3bb07-63f7-409e-9f0f-5b07fbf7cd8e",
"version": "3.0.0",
"python_path": "d3m.primitives.clustering.k_means.Fastlvm",
"name": "K-means Clustering",
"digest": "2f35d32fa29b11058e3c5ec4a05099a1499fdc80b96ee2d1f4797a15decde24e"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.3.produce"
}
},
"outputs": [
{
"id": "produce"
}
],
"hyperparams": {
"k": {
"type": "VALUE",
"data": 100
}
}
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "8d38b340-f83f-4877-baaa-162f8e551736",
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.construct_predictions.DataFrameCommon",
"name": "Construct pipeline predictions output",
"digest": "d75bfcfcfc2bc4a8734ba22b7fd1b8cbb3e54d7bbaa1b190c6347ecde096f16b"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.4.produce"
},
"reference": {
"type": "CONTAINER",
"data": "steps.0.produce"
}
},
"outputs": [
{
"id": "produce"
}
]
}
],
"digest": "ff4480ae0e59207914340e3daed4101d2a2b7c6b03a5d07489af1dc37a8d7256",
"pipeline_rank": "1"
}
\ No newline at end of file
{
"problem": "1491_one_hundred_plants_margin_clust_problem",
"full_inputs": [
"1491_one_hundred_plants_margin_clust_dataset"
],
"train_inputs": [
"1491_one_hundred_plants_margin_clust_dataset_TRAIN"
],
"test_inputs": [
"1491_one_hundred_plants_margin_clust_dataset_TEST"
],
"score_inputs": [
"1491_one_hundred_plants_margin_clust_dataset_SCORE"
]
}
{
"id": "5db2b2cf-ce99-41ee-8394-bd2d2c2af15c",
"schema": "https://metadata.datadrivendiscovery.org/schemas/v0/pipeline.json",
"created": "2019-04-09T17:29:16.155119Z",
"context": "EVALUATION",
"inputs": [
{
"name": "dataset inputs"
}
],
"outputs": [
{
"data": "steps.5.produce",
"name": "output predictions"
}
],
"steps": [
{
"type": "PRIMITIVE",
"primitive": {
"id": "f31f8c1f-d1c5-43e5-a4b2-2ae4a761ef2e",
"version": "0.2.0",
"python_path": "d3m.primitives.data_transformation.denormalize.Common",
"name": "Denormalize datasets",
"digest": "8d4429b234829ec285eb0c8981b12f492e546e678496b56cafe5843f20e71f61"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "inputs.0"
}
},
"outputs": [
{
"id": "produce"
}
]
},