Commit aa4d37af authored by Mitar's avatar Mitar

Migrating Cornell primitives to v2019.6.7.

parent 1bf3a58b
{
"created": "2019-06-05T19:40:54.744072Z",
"digest": "99b87aa6dda2615a5a95759852760734d32fc776a6607aa26460a7b7d669c0ca",
"id": "7eab6c73-9011-4369-8fca-587e5fbae537",
"inputs": [
{
"name": "inputs"
}
],
"outputs": [
{
"data": "steps.9.produce",
"name": "output"
}
],
"schema": "https://metadata.datadrivendiscovery.org/schemas/v0/pipeline.json",
"steps": [
{
"arguments": {
"inputs": {
"data": "inputs.0",
"type": "CONTAINER"
}
},
"outputs": [
{
"id": "produce"
}
],
"primitive": {
"digest": "748b3f6c9d26a4323a34a6da464c5de3dcab0d784a127819106acef1466e9550",
"id": "4b42ce1e-9b98-4a25-b68e-fad13311eb65",
"name": "Extract a DataFrame from a Dataset",
"python_path": "d3m.primitives.data_transformation.dataset_to_dataframe.Common",
"version": "0.3.0"
},
"type": "PRIMITIVE"
},
{
"arguments": {
"inputs": {
"data": "steps.0.produce",
"type": "CONTAINER"
}
},
"hyperparams": {
"semantic_types": {
"data": [
"https://metadata.datadrivendiscovery.org/types/Attribute"
],
"type": "VALUE"
}
},
"outputs": [
{
"id": "produce"
}
],
"primitive": {
"digest": "e1ef694b5642f037531be4f9a9c29aef62466b8e61dd8e174ccd673977761abb",
"id": "4503a4c6-42f7-45a1-a1d4-ed69699cf5e1",
"name": "Extracts columns by semantic type",
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon",
"version": "0.2.0"
},
"type": "PRIMITIVE"
},
{
"arguments": {
"inputs": {
"data": "steps.0.produce",
"type": "CONTAINER"
}
},
"hyperparams": {
"semantic_types": {
"data": [
"https://metadata.datadrivendiscovery.org/types/SuggestedTarget"
],
"type": "VALUE"
}
},
"outputs": [
{
"id": "produce"
}
],
"primitive": {
"digest": "e1ef694b5642f037531be4f9a9c29aef62466b8e61dd8e174ccd673977761abb",
"id": "4503a4c6-42f7-45a1-a1d4-ed69699cf5e1",
"name": "Extracts columns by semantic type",
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon",
"version": "0.2.0"
},
"type": "PRIMITIVE"
},
{
"arguments": {
"inputs": {
"data": "steps.2.produce",
"type": "CONTAINER"
}
},
"outputs": [
{
"id": "produce"
}
],
"primitive": {
"digest": "943071cbebe517da54fcdf98edfc0464f2534c57de34cb40b1d3c0eb95faf268",
"id": "26fc8fd3-f6b2-4c65-8afb-edb54ed2a3e4",
"name": "Label encoder with an unseen category",
"python_path": "d3m.primitives.data_preprocessing.label_encoder.DataFrameCommon",
"version": "0.2.0"
},
"type": "PRIMITIVE"
},
{
"arguments": {
"inputs": {
"data": "steps.1.produce",
"type": "CONTAINER"
}
},
"outputs": [
{
"id": "produce"
}
],
"primitive": {
"digest": "6deed8e4798fd219f4745c4459ba67036ed25dbb1d3a2459b24416cd4460951e",
"id": "d510cb7a-1782-4f51-b44c-58f0236e47c7",
"name": "Parses strings into their types",
"python_path": "d3m.primitives.data_transformation.column_parser.DataFrameCommon",
"version": "0.5.0"
},
"type": "PRIMITIVE"
},
{
"arguments": {
"inputs": {
"data": "steps.4.produce",
"type": "CONTAINER"
}
},
"outputs": [
{
"id": "produce"
}
],
"primitive": {
"digest": "68d62990d02c086c91690a4d59517c471330ab772c808302eee91ce8d6646a3e",
"id": "e6ee30fa-af68-4bfe-9234-5ca7e7ac8e93",
"name": "Matrix Completion via Sparse Factorization",
"python_path": "d3m.primitives.cornell.high_rank_imputer",
"version": "v0.1.1"
},
"type": "PRIMITIVE"
},
{
"arguments": {
"inputs": {
"data": "steps.5.produce",
"type": "CONTAINER"
}
},
"outputs": [
{
"id": "produce"
}
],
"primitive": {
"digest": "53890564fea5360b0ee8170af04a5590e293b640909838cae5d9e3416c1b31ec",
"id": "d639947e-ece0-3a39-a666-e974acf4521d",
"name": "sklearn.preprocessing.data.StandardScaler",
"python_path": "d3m.primitives.data_preprocessing.standard_scaler.SKlearn",
"version": "2019.4.4"
},
"type": "PRIMITIVE"
},
{
"arguments": {
"inputs": {
"data": "steps.6.produce",
"type": "CONTAINER"
},
"outputs": {
"data": "steps.3.produce",
"type": "CONTAINER"
}
},
"outputs": [
{
"id": "produce"
}
],
"primitive": {
"digest": "ac92df6bc8251c73a600f664e21cb151fdf94a2b3016a14a937562ba897c839c",
"id": "0ae7d42d-f765-3348-a28c-57d94880aa6a",
"name": "sklearn.svm.classes.SVC",
"python_path": "d3m.primitives.classification.svc.SKlearn",
"version": "2019.4.4"
},
"type": "PRIMITIVE"
},
{
"arguments": {
"inputs": {
"data": "steps.7.produce",
"type": "CONTAINER"
}
},
"outputs": [
{
"id": "produce"
}
],
"primitive": {
"digest": "a8aea6867f6a569a3cbadcf27a0fe86cee519a8bd60e39625786ddc606d0a1e2",
"id": "39ae30f7-39ed-40af-8679-5cf108499605",
"name": "Label decoder for UnseenLabelEncoderPrimitive",
"python_path": "d3m.primitives.data_preprocessing.label_decoder.DataFrameCommon",
"version": "0.1.0"
},
"type": "PRIMITIVE"
},
{
"arguments": {
"inputs": {
"data": "steps.8.produce",
"type": "CONTAINER"
},
"reference": {
"data": "steps.0.produce",
"type": "CONTAINER"
}
},
"outputs": [
{
"id": "produce"
}
],
"primitive": {
"digest": "bc09b1d3e656bbf5ed10a6b13382e8a52ffd18552f5803f28b25b79fbf25ca52",
"id": "8d38b340-f83f-4877-baaa-162f8e551736",
"name": "Construct pipeline predictions output",
"python_path": "d3m.primitives.data_transformation.construct_predictions.DataFrameCommon",
"version": "0.3.0"
},
"type": "PRIMITIVE"
}
]
}
\ No newline at end of file
{
"problem": "38_sick_problem",
"full_inputs": [
"38_sick_dataset"
],
"train_inputs": [
"38_sick_dataset_TRAIN"
],
"test_inputs": [
"38_sick_dataset_TEST"
],
"score_inputs": [
"38_sick_dataset_SCORE"
]
}
{
"created": "2019-06-05T05:47:07.014522Z",
"digest": "550a79ef0c40de4675427a379fe6e6fd8dd694241b7207cb022e458ec0844921",
"id": "22fb45eb-47c8-458d-8894-ad1c33c2a201",
"inputs": [
{
"name": "inputs"
}
],
"outputs": [
{
"data": "steps.10.produce",
"name": "output"
}
],
"schema": "https://metadata.datadrivendiscovery.org/schemas/v0/pipeline.json",
"steps": [
{
"arguments": {
"inputs": {
"data": "inputs.0",
"type": "CONTAINER"
}
},
"outputs": [
{
"id": "produce"
}
],
"primitive": {
"digest": "748b3f6c9d26a4323a34a6da464c5de3dcab0d784a127819106acef1466e9550",
"id": "4b42ce1e-9b98-4a25-b68e-fad13311eb65",
"name": "Extract a DataFrame from a Dataset",
"python_path": "d3m.primitives.data_transformation.dataset_to_dataframe.Common",
"version": "0.3.0"
},
"type": "PRIMITIVE"
},
{
"arguments": {
"inputs": {
"data": "steps.0.produce",
"type": "CONTAINER"
}
},
"hyperparams": {
"semantic_types": {
"data": [
"https://metadata.datadrivendiscovery.org/types/Attribute"
],
"type": "VALUE"
}
},
"outputs": [
{
"id": "produce"
}
],
"primitive": {
"digest": "e1ef694b5642f037531be4f9a9c29aef62466b8e61dd8e174ccd673977761abb",
"id": "4503a4c6-42f7-45a1-a1d4-ed69699cf5e1",
"name": "Extracts columns by semantic type",
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon",
"version": "0.2.0"
},
"type": "PRIMITIVE"
},
{
"arguments": {
"inputs": {
"data": "steps.0.produce",
"type": "CONTAINER"
}
},
"hyperparams": {
"semantic_types": {
"data": [
"https://metadata.datadrivendiscovery.org/types/SuggestedTarget"
],
"type": "VALUE"
}
},
"outputs": [
{
"id": "produce"
}
],
"primitive": {
"digest": "e1ef694b5642f037531be4f9a9c29aef62466b8e61dd8e174ccd673977761abb",
"id": "4503a4c6-42f7-45a1-a1d4-ed69699cf5e1",
"name": "Extracts columns by semantic type",
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon",
"version": "0.2.0"
},
"type": "PRIMITIVE"
},
{
"arguments": {
"inputs": {
"data": "steps.2.produce",
"type": "CONTAINER"
}
},
"outputs": [
{
"id": "produce"
}
],
"primitive": {
"digest": "943071cbebe517da54fcdf98edfc0464f2534c57de34cb40b1d3c0eb95faf268",
"id": "26fc8fd3-f6b2-4c65-8afb-edb54ed2a3e4",
"name": "Label encoder with an unseen category",
"python_path": "d3m.primitives.data_preprocessing.label_encoder.DataFrameCommon",
"version": "0.2.0"
},
"type": "PRIMITIVE"
},
{
"arguments": {
"inputs": {
"data": "steps.1.produce",
"type": "CONTAINER"
}
},
"outputs": [
{
"id": "produce"
}
],
"primitive": {
"digest": "6deed8e4798fd219f4745c4459ba67036ed25dbb1d3a2459b24416cd4460951e",
"id": "d510cb7a-1782-4f51-b44c-58f0236e47c7",
"name": "Parses strings into their types",
"python_path": "d3m.primitives.data_transformation.column_parser.DataFrameCommon",
"version": "0.5.0"
},
"type": "PRIMITIVE"
},
{
"arguments": {
"inputs": {
"data": "steps.4.produce",
"type": "CONTAINER"
}
},
"outputs": [
{
"id": "produce"
}
],
"primitive": {
"digest": "8c36c71cc0018d0566008dd256748672a4d686bf00174f2c17ae063238be7b29",
"id": "d016df89-de62-3c53-87ed-c06bb6a23cde",
"name": "sklearn.impute.SimpleImputer",
"python_path": "d3m.primitives.data_cleaning.imputer.SKlearn",
"version": "2019.4.4"
},
"type": "PRIMITIVE"
},
{
"arguments": {
"inputs": {
"data": "steps.5.produce",
"type": "CONTAINER"
}
},
"outputs": [
{
"id": "produce"
}
],
"primitive": {
"digest": "53890564fea5360b0ee8170af04a5590e293b640909838cae5d9e3416c1b31ec",
"id": "d639947e-ece0-3a39-a666-e974acf4521d",
"name": "sklearn.preprocessing.data.StandardScaler",
"python_path": "d3m.primitives.data_preprocessing.standard_scaler.SKlearn",
"version": "2019.4.4"
},
"type": "PRIMITIVE"
},
{
"arguments": {
"inputs": {
"data": "steps.6.produce",
"type": "CONTAINER"
}
},
"outputs": [
{
"id": "produce"
}
],
"primitive": {
"digest": "94bf88bdf39ffd3e4d564d5dbc73b0c77b9fe4b408e88efb818127015e817d03",
"id": "7c357e6e-7124-4f2a-8371-8021c8c95cc9",
"name": "Huber PCA",
"python_path": "d3m.primitives.cornell.pyglrm_d3m.huber_pca",
"version": "v0.1.1"
},
"type": "PRIMITIVE"
},
{
"arguments": {
"inputs": {
"data": "steps.7.produce",
"type": "CONTAINER"
},
"outputs": {
"data": "steps.3.produce",
"type": "CONTAINER"
}
},
"outputs": [
{
"id": "produce"
}
],
"primitive": {
"digest": "ac92df6bc8251c73a600f664e21cb151fdf94a2b3016a14a937562ba897c839c",
"id": "0ae7d42d-f765-3348-a28c-57d94880aa6a",
"name": "sklearn.svm.classes.SVC",
"python_path": "d3m.primitives.classification.svc.SKlearn",
"version": "2019.4.4"
},
"type": "PRIMITIVE"
},
{
"arguments": {
"inputs": {
"data": "steps.8.produce",
"type": "CONTAINER"
}
},
"outputs": [
{
"id": "produce"
}
],
"primitive": {
"digest": "a8aea6867f6a569a3cbadcf27a0fe86cee519a8bd60e39625786ddc606d0a1e2",
"id": "39ae30f7-39ed-40af-8679-5cf108499605",
"name": "Label decoder for UnseenLabelEncoderPrimitive",
"python_path": "d3m.primitives.data_preprocessing.label_decoder.DataFrameCommon",
"version": "0.1.0"
},
"type": "PRIMITIVE"
},
{
"arguments": {
"inputs": {
"data": "steps.9.produce",
"type": "CONTAINER"
},
"reference": {
"data": "steps.0.produce",
"type": "CONTAINER"
}
},
"outputs": [
{
"id": "produce"
}
],
"primitive": {
"digest": "bc09b1d3e656bbf5ed10a6b13382e8a52ffd18552f5803f28b25b79fbf25ca52",
"id": "8d38b340-f83f-4877-baaa-162f8e551736",
"name": "Construct pipeline predictions output",
"python_path": "d3m.primitives.data_transformation.construct_predictions.DataFrameCommon",
"version": "0.3.0"
},
"type": "PRIMITIVE"
}
]
}
\ No newline at end of file
{
"problem": "38_sick_problem",
"full_inputs": [
"38_sick_dataset"
],
"train_inputs": [
"38_sick_dataset_TRAIN"
],
"test_inputs": [
"38_sick_dataset_TEST"
],
"score_inputs": [
"38_sick_dataset_SCORE"
]
}
{
"created": "2019-06-05T05:44:52.362809Z",
"digest": "331159512fa6f6dd11972531e21b0832f21665c56af980fbac0c7890a33aece7",
"id": "5140dbd1-c23c-41fa-b8fb-9544a1e0fe9e",
"inputs": [
{
"name": "inputs"
}
],
"outputs": [
{
"data": "steps.9.produce",
"name": "output"
}
],
"schema": "https://metadata.datadrivendiscovery.org/schemas/v0/pipeline.json",
"steps": [
{
"arguments": {
"inputs": {
"data": "inputs.0",
"type": "CONTAINER"
}
},
"outputs": [
{
"id": "produce"
}
],
"primitive": {
"digest": "748b3f6c9d26a4323a34a6da464c5de3dcab0d784a127819106acef1466e9550",
"id": "4b42ce1e-9b98-4a25-b68e-fad13311eb65",
"name": "Extract a DataFrame from a Dataset",
"python_path": "d3m.primitives.data_transformation.dataset_to_dataframe.Common",
"version": "0.3.0"
},
"type": "PRIMITIVE"
},
{
"arguments": {
"inputs": {
"data": "steps.0.produce",
"type": "CONTAINER"
}
},
"hyperparams": {
"semantic_types": {
"data": [
"https://metadata.datadrivendiscovery.org/types/Attribute"
],
"type": "VALUE"
}
},
"outputs": [
{
"id": "produce"
}
],
"primitive": {
"digest": "e1ef694b5642f037531be4f9a9c29aef62466b8e61dd8e174ccd673977761abb",
"id": "4503a4c6-42f7-45a1-a1d4-ed69699cf5e1",
"name": "Extracts columns by semantic type",
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon",
"version": "0.2.0"
},
"type": "PRIMITIVE"
},
{
"arguments": {
"inputs": {
"data": "steps.0.produce",
"type": "CONTAINER"
}
},
"hyperparams":