Commit 8cb69be5 authored by David M Johnson's avatar David M Johnson

Michigan bugfixing and challenge problems.

parent 0db7f656
{
"id": "6cd75794-ed17-4aa1-88c9-934c54f043ce",
"id": "653c67c1-b1ed-4c09-82f3-be71e12c1c2d",
"schema": "https://metadata.datadrivendiscovery.org/schemas/v0/pipeline.json",
"created": "2019-06-20T22:32:55.154161Z",
"created": "2019-06-21T04:02:47.576291Z",
"inputs": [
{
"name": "inputs"
......@@ -21,7 +21,7 @@
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.dataset_to_dataframe.Common",
"name": "Extract a DataFrame from a Dataset",
"digest": "0d46a2c5bc374e305682dc4f1c322518c07638153a8365034a513ea46960802b"
"digest": "a141e6821de7ae586968b0986237745a5510850e6940cf946db9d50d3828b030"
},
"arguments": {
"inputs": {
......@@ -42,7 +42,7 @@
"version": "0.5.0",
"python_path": "d3m.primitives.data_transformation.column_parser.DataFrameCommon",
"name": "Parses strings into their types",
"digest": "312cacc014497dd674e34765f6eb54430e594c591e760da0383c87844753d2ce"
"digest": "d95eb0ea8a5e6f9abc0965a97e9c4f5d8f74a3df591c11c4145faea3e581cd06"
},
"arguments": {
"inputs": {
......@@ -60,10 +60,10 @@
"type": "PRIMITIVE",
"primitive": {
"id": "4503a4c6-42f7-45a1-a1d4-ed69699cf5e1",
"version": "0.2.0",
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon",
"name": "Extracts columns by semantic type",
"digest": "297a4943484bcd532650d5727e23b3d11ca702688d7b64dfb5df8bf1282eaa47"
"digest": "2dda31ef0452060bc55070204c5328927e2b2537a03afa6333607e3e4828ab26"
},
"arguments": {
"inputs": {
......@@ -92,7 +92,7 @@
"version": "0.1.0",
"python_path": "d3m.primitives.data_transformation.dataframe_to_ndarray.Common",
"name": "DataFrame to ndarray converter",
"digest": "71862085ea87f4f68abc9f49b4fa661b1ee70a4f3a97f1c1bb4343e2d27dbd37"
"digest": "2288f7142b92ea992c5ee881a17367b08642e046a225f6f3f59e2c23f414cff8"
},
"arguments": {
"inputs": {
......@@ -113,7 +113,7 @@
"version": "0.0.5",
"python_path": "d3m.primitives.clustering.ekss.Umich",
"name": "EKSS",
"digest": "f7ba65f3a36dd2ea2025c9ca67c8d8f485b65529ea7eac85426edbd5c3e6338c"
"digest": "4db5e5e73899f851a6cf2b4adfaf3c7cb8461a37bbdcdfe325388f1b417bb470"
},
"arguments": {
"inputs": {
......@@ -140,7 +140,7 @@
"version": "0.1.0",
"python_path": "d3m.primitives.data_transformation.ndarray_to_dataframe.Common",
"name": "ndarray to Dataframe converter",
"digest": "801aa292c7b8ceb0a7dba20618aa7949b289551d8cd314e5de14190084200fc9"
"digest": "23d7482449c0b262f1a0991ec0015c00e86c342f283400264d400b332aea020c"
},
"arguments": {
"inputs": {
......@@ -161,7 +161,7 @@
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.construct_predictions.DataFrameCommon",
"name": "Construct pipeline predictions output",
"digest": "cfb2d595652c4ae0d24e67d4cb8e4916c9f3c2753eaccc2935263d054b3682fa"
"digest": "96382129c2d9e87a2c0ab0b477b410947e5644d4dfae24e905d16a72d32dc41b"
},
"arguments": {
"inputs": {
......@@ -180,5 +180,5 @@
]
}
],
"digest": "07bc838dd42260de8cf245aa8d5ccac6b99baa5308b118639a336b35b4251125"
"digest": "59d4fc25673c167e871fd951adb1a3585a89d01eda515cc566343533f76a98c7"
}
\ No newline at end of file
......@@ -21,7 +21,7 @@
"installation": [
{
"type": "PIP",
"package_uri": "git+https://github.com/dvdmjohnson/d3m_michigan_primitives.git@0124bf9312e70cd31980ca67a9fdf7fa6976de69#egg=spider"
"package_uri": "git+https://github.com/dvdmjohnson/d3m_michigan_primitives.git@aa14dd2ad88b7d580779f42eec8a7d0a9632f4c4#egg=spider"
},
{
"type": "UBUNTU",
......@@ -284,5 +284,5 @@
}
},
"structural_type": "spider.cluster.ekss.ekss.EKSS",
"digest": "f7ba65f3a36dd2ea2025c9ca67c8d8f485b65529ea7eac85426edbd5c3e6338c"
"digest": "4db5e5e73899f851a6cf2b4adfaf3c7cb8461a37bbdcdfe325388f1b417bb470"
}
{
"id": "db36ff81-fa35-4096-b791-697df493133c",
"id": "34417daa-461d-4bcb-ae3f-0a608f54cd80",
"schema": "https://metadata.datadrivendiscovery.org/schemas/v0/pipeline.json",
"created": "2019-06-20T22:32:51.123879Z",
"created": "2019-06-21T04:02:45.207229Z",
"inputs": [
{
"name": "inputs"
......@@ -21,7 +21,7 @@
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.dataset_to_dataframe.Common",
"name": "Extract a DataFrame from a Dataset",
"digest": "0d46a2c5bc374e305682dc4f1c322518c07638153a8365034a513ea46960802b"
"digest": "a141e6821de7ae586968b0986237745a5510850e6940cf946db9d50d3828b030"
},
"arguments": {
"inputs": {
......@@ -42,7 +42,7 @@
"version": "0.5.0",
"python_path": "d3m.primitives.data_transformation.column_parser.DataFrameCommon",
"name": "Parses strings into their types",
"digest": "312cacc014497dd674e34765f6eb54430e594c591e760da0383c87844753d2ce"
"digest": "d95eb0ea8a5e6f9abc0965a97e9c4f5d8f74a3df591c11c4145faea3e581cd06"
},
"arguments": {
"inputs": {
......@@ -60,10 +60,10 @@
"type": "PRIMITIVE",
"primitive": {
"id": "4503a4c6-42f7-45a1-a1d4-ed69699cf5e1",
"version": "0.2.0",
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon",
"name": "Extracts columns by semantic type",
"digest": "297a4943484bcd532650d5727e23b3d11ca702688d7b64dfb5df8bf1282eaa47"
"digest": "2dda31ef0452060bc55070204c5328927e2b2537a03afa6333607e3e4828ab26"
},
"arguments": {
"inputs": {
......@@ -92,7 +92,7 @@
"version": "0.1.0",
"python_path": "d3m.primitives.data_transformation.dataframe_to_ndarray.Common",
"name": "DataFrame to ndarray converter",
"digest": "71862085ea87f4f68abc9f49b4fa661b1ee70a4f3a97f1c1bb4343e2d27dbd37"
"digest": "2288f7142b92ea992c5ee881a17367b08642e046a225f6f3f59e2c23f414cff8"
},
"arguments": {
"inputs": {
......@@ -113,7 +113,7 @@
"version": "0.0.5",
"python_path": "d3m.primitives.clustering.kss.Umich",
"name": "KSS",
"digest": "74ee3a8edfaa4a9b3ae254fa894d73ee75bd2929b83c753d5ff1afb8573abf93"
"digest": "63edeeaf77e6c3329eeca4db1c702af5a622bc796eb7a34efced46d937e66226"
},
"arguments": {
"inputs": {
......@@ -144,7 +144,7 @@
"version": "0.1.0",
"python_path": "d3m.primitives.data_transformation.ndarray_to_dataframe.Common",
"name": "ndarray to Dataframe converter",
"digest": "801aa292c7b8ceb0a7dba20618aa7949b289551d8cd314e5de14190084200fc9"
"digest": "23d7482449c0b262f1a0991ec0015c00e86c342f283400264d400b332aea020c"
},
"arguments": {
"inputs": {
......@@ -165,7 +165,7 @@
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.construct_predictions.DataFrameCommon",
"name": "Construct pipeline predictions output",
"digest": "cfb2d595652c4ae0d24e67d4cb8e4916c9f3c2753eaccc2935263d054b3682fa"
"digest": "96382129c2d9e87a2c0ab0b477b410947e5644d4dfae24e905d16a72d32dc41b"
},
"arguments": {
"inputs": {
......@@ -184,5 +184,5 @@
]
}
],
"digest": "4699ea43bd73d74c6a0472b5fac30605feba916c956221c597d4aafed1aae7d9"
"digest": "34bfcbd1ede1742c32d7edc18d84276737f75c7e08ade8547c0e80d46221c1a0"
}
\ No newline at end of file
......@@ -20,7 +20,7 @@
"installation": [
{
"type": "PIP",
"package_uri": "git+https://github.com/dvdmjohnson/d3m_michigan_primitives.git@0124bf9312e70cd31980ca67a9fdf7fa6976de69#egg=spider"
"package_uri": "git+https://github.com/dvdmjohnson/d3m_michigan_primitives.git@aa14dd2ad88b7d580779f42eec8a7d0a9632f4c4#egg=spider"
},
{
"type": "UBUNTU",
......@@ -241,5 +241,5 @@
}
},
"structural_type": "spider.cluster.kss.kss.KSS",
"digest": "74ee3a8edfaa4a9b3ae254fa894d73ee75bd2929b83c753d5ff1afb8573abf93"
"digest": "63edeeaf77e6c3329eeca4db1c702af5a622bc796eb7a34efced46d937e66226"
}
{
"id": "5f18c59f-821c-43d2-b4c2-d95baefdbb72",
"id": "49deaa26-2115-427b-8edf-24495525f92f",
"schema": "https://metadata.datadrivendiscovery.org/schemas/v0/pipeline.json",
"created": "2019-06-20T22:32:58.618539Z",
"created": "2019-06-21T04:02:49.853083Z",
"inputs": [
{
"name": "inputs"
......@@ -21,7 +21,7 @@
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.dataset_to_dataframe.Common",
"name": "Extract a DataFrame from a Dataset",
"digest": "0d46a2c5bc374e305682dc4f1c322518c07638153a8365034a513ea46960802b"
"digest": "a141e6821de7ae586968b0986237745a5510850e6940cf946db9d50d3828b030"
},
"arguments": {
"inputs": {
......@@ -42,7 +42,7 @@
"version": "0.5.0",
"python_path": "d3m.primitives.data_transformation.column_parser.DataFrameCommon",
"name": "Parses strings into their types",
"digest": "312cacc014497dd674e34765f6eb54430e594c591e760da0383c87844753d2ce"
"digest": "d95eb0ea8a5e6f9abc0965a97e9c4f5d8f74a3df591c11c4145faea3e581cd06"
},
"arguments": {
"inputs": {
......@@ -60,10 +60,10 @@
"type": "PRIMITIVE",
"primitive": {
"id": "4503a4c6-42f7-45a1-a1d4-ed69699cf5e1",
"version": "0.2.0",
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon",
"name": "Extracts columns by semantic type",
"digest": "297a4943484bcd532650d5727e23b3d11ca702688d7b64dfb5df8bf1282eaa47"
"digest": "2dda31ef0452060bc55070204c5328927e2b2537a03afa6333607e3e4828ab26"
},
"arguments": {
"inputs": {
......@@ -92,7 +92,7 @@
"version": "0.1.0",
"python_path": "d3m.primitives.data_transformation.dataframe_to_ndarray.Common",
"name": "DataFrame to ndarray converter",
"digest": "71862085ea87f4f68abc9f49b4fa661b1ee70a4f3a97f1c1bb4343e2d27dbd37"
"digest": "2288f7142b92ea992c5ee881a17367b08642e046a225f6f3f59e2c23f414cff8"
},
"arguments": {
"inputs": {
......@@ -113,7 +113,7 @@
"version": "0.0.5",
"python_path": "d3m.primitives.clustering.ssc_admm.Umich",
"name": "SSC_ADMM",
"digest": "2ad39dcb48f695baf8776b1b80afec6eff1c743ad0efdc2189a3f89d8c62c162"
"digest": "476454536717e5f7b2637876ade626a26f4d83f281cae171c4ace5247f281f09"
},
"arguments": {
"inputs": {
......@@ -140,7 +140,7 @@
"version": "0.1.0",
"python_path": "d3m.primitives.data_transformation.ndarray_to_dataframe.Common",
"name": "ndarray to Dataframe converter",
"digest": "801aa292c7b8ceb0a7dba20618aa7949b289551d8cd314e5de14190084200fc9"
"digest": "23d7482449c0b262f1a0991ec0015c00e86c342f283400264d400b332aea020c"
},
"arguments": {
"inputs": {
......@@ -161,7 +161,7 @@
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.construct_predictions.DataFrameCommon",
"name": "Construct pipeline predictions output",
"digest": "cfb2d595652c4ae0d24e67d4cb8e4916c9f3c2753eaccc2935263d054b3682fa"
"digest": "96382129c2d9e87a2c0ab0b477b410947e5644d4dfae24e905d16a72d32dc41b"
},
"arguments": {
"inputs": {
......@@ -180,5 +180,5 @@
]
}
],
"digest": "10e76bb8d204fdd36968ef7558dc17f28c58da630bc2eee1bcd78c23227a460b"
"digest": "2cf3c358a7539d72a3158f07fc0f055199105e01d10af46ee087fdce09927f33"
}
\ No newline at end of file
......@@ -21,7 +21,7 @@
"installation": [
{
"type": "PIP",
"package_uri": "git+https://github.com/dvdmjohnson/d3m_michigan_primitives.git@0124bf9312e70cd31980ca67a9fdf7fa6976de69#egg=spider"
"package_uri": "git+https://github.com/dvdmjohnson/d3m_michigan_primitives.git@aa14dd2ad88b7d580779f42eec8a7d0a9632f4c4#egg=spider"
},
{
"type": "UBUNTU",
......@@ -282,5 +282,5 @@
}
},
"structural_type": "spider.cluster.ssc_admm.ssc_admm.SSC_ADMM",
"digest": "2ad39dcb48f695baf8776b1b80afec6eff1c743ad0efdc2189a3f89d8c62c162"
"digest": "476454536717e5f7b2637876ade626a26f4d83f281cae171c4ace5247f281f09"
}
{
"id": "c19d4e47-622c-4cd9-850a-ffdfbe93e450",
"id": "05a5cec6-78ab-40b6-ae48-f90403ed5293",
"schema": "https://metadata.datadrivendiscovery.org/schemas/v0/pipeline.json",
"created": "2019-06-20T22:33:02.596933Z",
"created": "2019-06-21T04:02:52.095370Z",
"inputs": [
{
"name": "inputs"
......@@ -21,7 +21,7 @@
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.dataset_to_dataframe.Common",
"name": "Extract a DataFrame from a Dataset",
"digest": "0d46a2c5bc374e305682dc4f1c322518c07638153a8365034a513ea46960802b"
"digest": "a141e6821de7ae586968b0986237745a5510850e6940cf946db9d50d3828b030"
},
"arguments": {
"inputs": {
......@@ -42,7 +42,7 @@
"version": "0.5.0",
"python_path": "d3m.primitives.data_transformation.column_parser.DataFrameCommon",
"name": "Parses strings into their types",
"digest": "312cacc014497dd674e34765f6eb54430e594c591e760da0383c87844753d2ce"
"digest": "d95eb0ea8a5e6f9abc0965a97e9c4f5d8f74a3df591c11c4145faea3e581cd06"
},
"arguments": {
"inputs": {
......@@ -60,10 +60,10 @@
"type": "PRIMITIVE",
"primitive": {
"id": "4503a4c6-42f7-45a1-a1d4-ed69699cf5e1",
"version": "0.2.0",
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon",
"name": "Extracts columns by semantic type",
"digest": "297a4943484bcd532650d5727e23b3d11ca702688d7b64dfb5df8bf1282eaa47"
"digest": "2dda31ef0452060bc55070204c5328927e2b2537a03afa6333607e3e4828ab26"
},
"arguments": {
"inputs": {
......@@ -92,7 +92,7 @@
"version": "0.1.0",
"python_path": "d3m.primitives.data_transformation.dataframe_to_ndarray.Common",
"name": "DataFrame to ndarray converter",
"digest": "71862085ea87f4f68abc9f49b4fa661b1ee70a4f3a97f1c1bb4343e2d27dbd37"
"digest": "2288f7142b92ea992c5ee881a17367b08642e046a225f6f3f59e2c23f414cff8"
},
"arguments": {
"inputs": {
......@@ -113,7 +113,7 @@
"version": "0.0.5",
"python_path": "d3m.primitives.clustering.ssc_cvx.Umich",
"name": "SSC_CVX",
"digest": "1bf2151df031d5409fd200c584cef7772652a6c21fa4a688ba0485700e2ba1e4"
"digest": "a424bd1b2882662405b117353cad3dedfc740f3e2a737dfabb7b7f09521129d5"
},
"arguments": {
"inputs": {
......@@ -140,7 +140,7 @@
"version": "0.1.0",
"python_path": "d3m.primitives.data_transformation.ndarray_to_dataframe.Common",
"name": "ndarray to Dataframe converter",
"digest": "801aa292c7b8ceb0a7dba20618aa7949b289551d8cd314e5de14190084200fc9"
"digest": "23d7482449c0b262f1a0991ec0015c00e86c342f283400264d400b332aea020c"
},
"arguments": {
"inputs": {
......@@ -161,7 +161,7 @@
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.construct_predictions.DataFrameCommon",
"name": "Construct pipeline predictions output",
"digest": "cfb2d595652c4ae0d24e67d4cb8e4916c9f3c2753eaccc2935263d054b3682fa"
"digest": "96382129c2d9e87a2c0ab0b477b410947e5644d4dfae24e905d16a72d32dc41b"
},
"arguments": {
"inputs": {
......@@ -180,5 +180,5 @@
]
}
],
"digest": "9dbd93d4f0d296f809f49869cf2ac48abc30efa834b920e91b2dd4134b537986"
"digest": "c846c759d6b71d56a49b8aa79a26a0314696f8d448ff4521432a4ab2f49715ab"
}
\ No newline at end of file
......@@ -21,7 +21,7 @@
"installation": [
{
"type": "PIP",
"package_uri": "git+https://github.com/dvdmjohnson/d3m_michigan_primitives.git@0124bf9312e70cd31980ca67a9fdf7fa6976de69#egg=spider"
"package_uri": "git+https://github.com/dvdmjohnson/d3m_michigan_primitives.git@aa14dd2ad88b7d580779f42eec8a7d0a9632f4c4#egg=spider"
},
{
"type": "UBUNTU",
......@@ -295,5 +295,5 @@
}
},
"structural_type": "spider.cluster.ssc_cvx.ssc_cvx.SSC_CVX",
"digest": "1bf2151df031d5409fd200c584cef7772652a6c21fa4a688ba0485700e2ba1e4"
"digest": "a424bd1b2882662405b117353cad3dedfc740f3e2a737dfabb7b7f09521129d5"
}
{
"id": "ca730ab6-2719-43ed-a77e-f29137f7900e",
"id": "74ff2593-72a5-4524-b26c-c859ef3d869f",
"schema": "https://metadata.datadrivendiscovery.org/schemas/v0/pipeline.json",
"created": "2019-06-20T22:33:06.100933Z",
"created": "2019-06-21T04:02:54.341304Z",
"inputs": [
{
"name": "inputs"
......@@ -21,7 +21,7 @@
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.dataset_to_dataframe.Common",
"name": "Extract a DataFrame from a Dataset",
"digest": "0d46a2c5bc374e305682dc4f1c322518c07638153a8365034a513ea46960802b"
"digest": "a141e6821de7ae586968b0986237745a5510850e6940cf946db9d50d3828b030"
},
"arguments": {
"inputs": {
......@@ -42,7 +42,7 @@
"version": "0.5.0",
"python_path": "d3m.primitives.data_transformation.column_parser.DataFrameCommon",
"name": "Parses strings into their types",
"digest": "312cacc014497dd674e34765f6eb54430e594c591e760da0383c87844753d2ce"
"digest": "d95eb0ea8a5e6f9abc0965a97e9c4f5d8f74a3df591c11c4145faea3e581cd06"
},
"arguments": {
"inputs": {
......@@ -60,10 +60,10 @@
"type": "PRIMITIVE",
"primitive": {
"id": "4503a4c6-42f7-45a1-a1d4-ed69699cf5e1",
"version": "0.2.0",
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon",
"name": "Extracts columns by semantic type",
"digest": "297a4943484bcd532650d5727e23b3d11ca702688d7b64dfb5df8bf1282eaa47"
"digest": "2dda31ef0452060bc55070204c5328927e2b2537a03afa6333607e3e4828ab26"
},
"arguments": {
"inputs": {
......@@ -92,7 +92,7 @@
"version": "0.1.0",
"python_path": "d3m.primitives.data_transformation.dataframe_to_ndarray.Common",
"name": "DataFrame to ndarray converter",
"digest": "71862085ea87f4f68abc9f49b4fa661b1ee70a4f3a97f1c1bb4343e2d27dbd37"
"digest": "2288f7142b92ea992c5ee881a17367b08642e046a225f6f3f59e2c23f414cff8"
},
"arguments": {
"inputs": {
......@@ -113,7 +113,7 @@
"version": "0.0.5",
"python_path": "d3m.primitives.clustering.ssc_omp.Umich",
"name": "SSC_OMP",
"digest": "8601e27e4e81dfd7cdbbe259273d0cdab8355705ed7a6406b436384f40722cc1"
"digest": "dc7a5830c8c9c7214043b062a65322c460c777a1e8a8710bce3fff088facd8a5"
},
"arguments": {
"inputs": {
......@@ -144,7 +144,7 @@
"version": "0.1.0",
"python_path": "d3m.primitives.data_transformation.ndarray_to_dataframe.Common",
"name": "ndarray to Dataframe converter",
"digest": "801aa292c7b8ceb0a7dba20618aa7949b289551d8cd314e5de14190084200fc9"
"digest": "23d7482449c0b262f1a0991ec0015c00e86c342f283400264d400b332aea020c"
},
"arguments": {
"inputs": {
......@@ -165,7 +165,7 @@
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.construct_predictions.DataFrameCommon",
"name": "Construct pipeline predictions output",
"digest": "cfb2d595652c4ae0d24e67d4cb8e4916c9f3c2753eaccc2935263d054b3682fa"
"digest": "96382129c2d9e87a2c0ab0b477b410947e5644d4dfae24e905d16a72d32dc41b"
},
"arguments": {
"inputs": {
......@@ -184,5 +184,5 @@
]
}
],
"digest": "9f7478232bcb6d17da76f56750c569169ec06185bf5eeeb4c4f70af653c661a9"
"digest": "0230d703f8f5686c9346cfab8e9a3628d4fd2cc0e5da291e894ce6f12f04ac8a"
}
\ No newline at end of file
......@@ -21,7 +21,7 @@
"installation": [
{
"type": "PIP",
"package_uri": "git+https://github.com/dvdmjohnson/d3m_michigan_primitives.git@0124bf9312e70cd31980ca67a9fdf7fa6976de69#egg=spider"
"package_uri": "git+https://github.com/dvdmjohnson/d3m_michigan_primitives.git@aa14dd2ad88b7d580779f42eec8a7d0a9632f4c4#egg=spider"
},
{
"type": "UBUNTU",
......@@ -252,5 +252,5 @@
}
},
"structural_type": "spider.cluster.ssc_omp.ssc_omp.SSC_OMP",
"digest": "8601e27e4e81dfd7cdbbe259273d0cdab8355705ed7a6406b436384f40722cc1"
"digest": "dc7a5830c8c9c7214043b062a65322c460c777a1e8a8710bce3fff088facd8a5"
}
{
"id": "d2f75ef0-6e21-4589-890b-d9114abb9564",
"id": "8943ba51-76eb-443d-86e3-ad9b4c7e726a",
"schema": "https://metadata.datadrivendiscovery.org/schemas/v0/pipeline.json",
"created": "2019-06-20T22:32:31.308187Z",
"created": "2019-06-21T04:02:32.278826Z",
"inputs": [
{
"name": "inputs"
......@@ -21,7 +21,7 @@
"version": "0.2.0",
"python_path": "d3m.primitives.data_transformation.denormalize.Common",
"name": "Denormalize datasets",
"digest": "00ae7955cc0abce2a3ddee96247209f3395009ae6553c7ce8caa577e402754db"
"digest": "6a80776d244347f0d29f4358df1cd0286c25f67e03a7e2ee517c6e853e6a9d1f"
},
"arguments": {
"inputs": {
......@@ -42,7 +42,7 @@
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.dataset_to_dataframe.Common",
"name": "Extract a DataFrame from a Dataset",
"digest": "0d46a2c5bc374e305682dc4f1c322518c07638153a8365034a513ea46960802b"
"digest": "a141e6821de7ae586968b0986237745a5510850e6940cf946db9d50d3828b030"
},
"arguments": {
"inputs": {
......@@ -63,7 +63,7 @@
"version": "0.2.0",
"python_path": "d3m.primitives.data_preprocessing.image_reader.DataFrameCommon",
"name": "Columns image reader",
"digest": "a8ed92bc3d4625971eb1ef61aa0d6cfd9c2caea4fd3d0e92491bd225c1cfe484"
"digest": "d880bb6264cab5087bd9c5fcc343d06c68e05585a122b5f4ad56e2638b3e81a2"
},
"arguments": {
"inputs": {
......@@ -81,10 +81,10 @@
"type": "PRIMITIVE",
"primitive": {
"id": "4503a4c6-42f7-45a1-a1d4-ed69699cf5e1",
"version": "0.2.0",
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon",
"name": "Extracts columns by semantic type",
"digest": "297a4943484bcd532650d5727e23b3d11ca702688d7b64dfb5df8bf1282eaa47"
"digest": "2dda31ef0452060bc55070204c5328927e2b2537a03afa6333607e3e4828ab26"
},
"arguments": {
"inputs": {
......@@ -110,10 +110,10 @@
"type": "PRIMITIVE",
"primitive": {
"id": "4503a4c6-42f7-45a1-a1d4-ed69699cf5e1",
"version": "0.2.0",
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon",
"name": "Extracts columns by semantic type",
"digest": "297a4943484bcd532650d5727e23b3d11ca702688d7b64dfb5df8bf1282eaa47"
"digest": "2dda31ef0452060bc55070204c5328927e2b2537a03afa6333607e3e4828ab26"
},
"arguments": {
"inputs": {
......@@ -142,7 +142,7 @@
"version": "0.1.0",
"python_path": "d3m.primitives.data_transformation.dataframe_to_ndarray.Common",
"name": "DataFrame to ndarray converter",
"digest": "71862085ea87f4f68abc9f49b4fa661b1ee70a4f3a97f1c1bb4343e2d27dbd37"
"digest": "2288f7142b92ea992c5ee881a17367b08642e046a225f6f3f59e2c23f414cff8"
},
"arguments": {
"inputs": {
......@@ -163,7 +163,7 @@
"version": "0.0.5",
"python_path": "d3m.primitives.feature_extraction.vgg16.Umich",
"name": "VGG16",
"digest": "355da3ee14dabb84477988d307b43bac719041c6f618510a200513ba58b4e664"
"digest": "663779dc46517521fb284a39898da68e0524e4734a0f0db79f02fdac230c6cf4"
},
"arguments": {
"inputs": {
......@@ -184,7 +184,7 @@
"version": "0.0.5",
"python_path": "d3m.primitives.data_compression.go_dec.Umich",
"name": "GO_DEC",
"digest": "60ef74c78db9493822a2b9869c11506e9751e70c521136b155807b88a8402efc"
"digest": "26503897d88b621c21525a3e14048cf4e953173b7a47b7a428aeba4036f223a5"
},
"arguments": {
"inputs": {
......@@ -205,7 +205,7 @@
"version": "0.1.0",
"python_path": "d3m.primitives.data_transformation.ndarray_to_dataframe.Common",
"name": "ndarray to Dataframe converter",
"digest": "801aa292c7b8ceb0a7dba20618aa7949b289551d8cd314e5de14190084200fc9"
"digest": "23d7482449c0b262f1a0991ec0015c00e86c342f283400264d400b332aea020c"
},
"arguments": {
"inputs": {
......@@ -223,10 +223,10 @@
"type": "PRIMITIVE",
"primitive": {
"id": "f40ffdc0-1d6d-3234-8fd0-a3e4d7a136a7",
"version": "2019.4.4",
"version": "2019.6.7",
"python_path": "d3m.primitives.regression.linear_svr.SKlearn",
"name": "sklearn.svm.classes.LinearSVR",
"digest": "9486ccb5f57d8733be166c41021fa94f3db0669d11e7f66e898a7925b32dafea"
"digest": "d7b25ccc83aa16b3f8407d4b560863ba55221ab2cfc62772c3e6635a972ca0a8"
},
"arguments": {
"inputs": {
......@@ -251,7 +251,7 @@
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.construct_predictions.DataFrameCommon",
"name": "Construct pipeline predictions output",
"digest": "cfb2d595652c4ae0d24e67d4cb8e4916c9f3c2753eaccc2935263d054b3682fa"
"digest": "96382129c2d9e87a2c0ab0b477b410947e5644d4dfae24e905d16a72d32dc41b"
},
"arguments": {
"inputs": {
......@@ -270,5 +270,5 @@
]
}
],
"digest": "cdbb156cec3d97bbdb004f5491ec970642f9582f9bd2ce9af0ce3f45e391e7ea"
"digest": "d1ba7b090976d13578dbd631e95106c1851f309d1810f6a534c6e573098aa3c0"
}
\ No newline at end of file
......@@ -21,7 +21,7 @@
"installation": [
{
"type": "PIP",
"package_uri": "git+https://github.com/dvdmjohnson/d3m_michigan_primitives.git@0124bf9312e70cd31980ca67a9fdf7fa6976de69#egg=spider"
"package_uri": "git+https://github.com/dvdmjohnson/d3m_michigan_primitives.git@aa14dd2ad88b7d580779f42eec8a7d0a9632f4c4#egg=spider"
},
{
"type": "UBUNTU",
......@@ -285,5 +285,5 @@
}
},
"structural_type": "spider.dimensionality_reduction.go_dec.go_dec.GO_DEC",
"digest": "60ef74c78db9493822a2b9869c11506e9751e70c521136b155807b88a8402efc"