Commit 6d7f6e7b authored by Sujen's avatar Sujen

Merge branch 'michigan' into 'master'

Updating Michigan primitives.

See merge request datadrivendiscovery/primitives!244
parents 1c85337f 9519b57b
{
"id": "7ce0d7a0-25d1-4a80-8e8f-7ef332c24cca",
"id": "e24d4f65-a72c-42e9-83df-aa474fd514c5",
"schema": "https://metadata.datadrivendiscovery.org/schemas/v0/pipeline.json",
"created": "2019-06-16T02:42:42.979302Z",
"created": "2019-06-16T12:15:13.607625Z",
"inputs": [
{
"name": "inputs"
......@@ -21,7 +21,7 @@
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.dataset_to_dataframe.Common",
"name": "Extract a DataFrame from a Dataset",
"digest": "0d46a2c5bc374e305682dc4f1c322518c07638153a8365034a513ea46960802b"
"digest": "e557fc176af67913ed241dbe793cf986439157cfe9c4a12f1aafcba3c07b8b6f"
},
"arguments": {
"inputs": {
......@@ -42,7 +42,7 @@
"version": "0.5.0",
"python_path": "d3m.primitives.data_transformation.column_parser.DataFrameCommon",
"name": "Parses strings into their types",
"digest": "312cacc014497dd674e34765f6eb54430e594c591e760da0383c87844753d2ce"
"digest": "7e16e2b1e559690e221de471826d7d1cd36698bc5140dc00f3c7a6c6b711c3b2"
},
"arguments": {
"inputs": {
......@@ -63,7 +63,7 @@
"version": "0.2.0",
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon",
"name": "Extracts columns by semantic type",
"digest": "297a4943484bcd532650d5727e23b3d11ca702688d7b64dfb5df8bf1282eaa47"
"digest": "d4fa27a3e215b89d2231d344ec0202e1b8e41ad322deb79c68fd6ca673eae3f7"
},
"arguments": {
"inputs": {
......@@ -92,7 +92,7 @@
"version": "0.1.0",
"python_path": "d3m.primitives.data_transformation.dataframe_to_ndarray.Common",
"name": "DataFrame to ndarray converter",
"digest": "71862085ea87f4f68abc9f49b4fa661b1ee70a4f3a97f1c1bb4343e2d27dbd37"
"digest": "32594c9a3c9bdc6315463fa8c169b18379b7fda7115354360de0d96298cf1960"
},
"arguments": {
"inputs": {
......@@ -113,7 +113,7 @@
"version": "0.0.5",
"python_path": "d3m.primitives.clustering.ekss.Umich",
"name": "EKSS",
"digest": "062b5ab31474454bcd562dd63808a24bd1c47b6ff5b7ea85a48f02134fd4eb18"
"digest": "3f604a51cbf1628cf39f37fae49c5e802cdb7493fa4116a495f5ade37676633b"
},
"arguments": {
"inputs": {
......@@ -140,7 +140,7 @@
"version": "0.1.0",
"python_path": "d3m.primitives.data_transformation.ndarray_to_dataframe.Common",
"name": "ndarray to Dataframe converter",
"digest": "801aa292c7b8ceb0a7dba20618aa7949b289551d8cd314e5de14190084200fc9"
"digest": "dbc4bbf143ee01a74a5c3f54ec5daae1b938ee3600fa748ca3d5efe6b013ccb7"
},
"arguments": {
"inputs": {
......@@ -161,7 +161,7 @@
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.construct_predictions.DataFrameCommon",
"name": "Construct pipeline predictions output",
"digest": "cfb2d595652c4ae0d24e67d4cb8e4916c9f3c2753eaccc2935263d054b3682fa"
"digest": "077921b0d6cee9bbda9494bc60c8b48f8287db8d0bff674056a7c9e5cc92ebb9"
},
"arguments": {
"inputs": {
......@@ -180,5 +180,5 @@
]
}
],
"digest": "7d027f3c7be393b95d7b577eaade055d699547090a37c6722a7493f5b31bc829"
"digest": "f2b50a44e2d773249b92129a7ba5848c57e37d080ac1874a99067f00afcacbeb"
}
\ No newline at end of file
{
"id": "1d250fc8-ec93-42e8-ac29-53ecc03408c9",
"id": "7418fa0f-f960-4546-8c28-1c8beb454618",
"schema": "https://metadata.datadrivendiscovery.org/schemas/v0/pipeline.json",
"created": "2019-06-16T02:42:40.702335Z",
"created": "2019-06-16T12:15:11.322655Z",
"inputs": [
{
"name": "inputs"
......@@ -21,7 +21,7 @@
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.dataset_to_dataframe.Common",
"name": "Extract a DataFrame from a Dataset",
"digest": "0d46a2c5bc374e305682dc4f1c322518c07638153a8365034a513ea46960802b"
"digest": "e557fc176af67913ed241dbe793cf986439157cfe9c4a12f1aafcba3c07b8b6f"
},
"arguments": {
"inputs": {
......@@ -42,7 +42,7 @@
"version": "0.5.0",
"python_path": "d3m.primitives.data_transformation.column_parser.DataFrameCommon",
"name": "Parses strings into their types",
"digest": "312cacc014497dd674e34765f6eb54430e594c591e760da0383c87844753d2ce"
"digest": "7e16e2b1e559690e221de471826d7d1cd36698bc5140dc00f3c7a6c6b711c3b2"
},
"arguments": {
"inputs": {
......@@ -63,7 +63,7 @@
"version": "0.2.0",
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon",
"name": "Extracts columns by semantic type",
"digest": "297a4943484bcd532650d5727e23b3d11ca702688d7b64dfb5df8bf1282eaa47"
"digest": "d4fa27a3e215b89d2231d344ec0202e1b8e41ad322deb79c68fd6ca673eae3f7"
},
"arguments": {
"inputs": {
......@@ -92,7 +92,7 @@
"version": "0.1.0",
"python_path": "d3m.primitives.data_transformation.dataframe_to_ndarray.Common",
"name": "DataFrame to ndarray converter",
"digest": "71862085ea87f4f68abc9f49b4fa661b1ee70a4f3a97f1c1bb4343e2d27dbd37"
"digest": "32594c9a3c9bdc6315463fa8c169b18379b7fda7115354360de0d96298cf1960"
},
"arguments": {
"inputs": {
......@@ -113,7 +113,7 @@
"version": "0.0.5",
"python_path": "d3m.primitives.clustering.kss.Umich",
"name": "KSS",
"digest": "d9cde573c8033a966c55759371bc383a5000a86d3d0d85b5cb43a3f7a62b2798"
"digest": "cf17cf35fc30f36a09d632a0aaaca3024a0977b03dfa491d92d0a60e599dd8f7"
},
"arguments": {
"inputs": {
......@@ -144,7 +144,7 @@
"version": "0.1.0",
"python_path": "d3m.primitives.data_transformation.ndarray_to_dataframe.Common",
"name": "ndarray to Dataframe converter",
"digest": "801aa292c7b8ceb0a7dba20618aa7949b289551d8cd314e5de14190084200fc9"
"digest": "dbc4bbf143ee01a74a5c3f54ec5daae1b938ee3600fa748ca3d5efe6b013ccb7"
},
"arguments": {
"inputs": {
......@@ -165,7 +165,7 @@
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.construct_predictions.DataFrameCommon",
"name": "Construct pipeline predictions output",
"digest": "cfb2d595652c4ae0d24e67d4cb8e4916c9f3c2753eaccc2935263d054b3682fa"
"digest": "077921b0d6cee9bbda9494bc60c8b48f8287db8d0bff674056a7c9e5cc92ebb9"
},
"arguments": {
"inputs": {
......@@ -184,5 +184,5 @@
]
}
],
"digest": "d48071827c77cf527f092dd65e78a0689dfaf92220fc706f4e9eef0853f108f5"
"digest": "74d3f0cd1db9e07c27d996a201281907d6a484fb9622f07d23a22c17bbdd55c3"
}
\ No newline at end of file
{
"id": "52a71353-41f4-423d-aeab-d1298a44db2c",
"id": "681d23d3-d8ab-4754-a8c5-f9bf8d5bb79d",
"schema": "https://metadata.datadrivendiscovery.org/schemas/v0/pipeline.json",
"created": "2019-06-16T02:42:45.200922Z",
"created": "2019-06-16T12:15:15.895970Z",
"inputs": [
{
"name": "inputs"
......@@ -21,7 +21,7 @@
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.dataset_to_dataframe.Common",
"name": "Extract a DataFrame from a Dataset",
"digest": "0d46a2c5bc374e305682dc4f1c322518c07638153a8365034a513ea46960802b"
"digest": "e557fc176af67913ed241dbe793cf986439157cfe9c4a12f1aafcba3c07b8b6f"
},
"arguments": {
"inputs": {
......@@ -42,7 +42,7 @@
"version": "0.5.0",
"python_path": "d3m.primitives.data_transformation.column_parser.DataFrameCommon",
"name": "Parses strings into their types",
"digest": "312cacc014497dd674e34765f6eb54430e594c591e760da0383c87844753d2ce"
"digest": "7e16e2b1e559690e221de471826d7d1cd36698bc5140dc00f3c7a6c6b711c3b2"
},
"arguments": {
"inputs": {
......@@ -63,7 +63,7 @@
"version": "0.2.0",
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon",
"name": "Extracts columns by semantic type",
"digest": "297a4943484bcd532650d5727e23b3d11ca702688d7b64dfb5df8bf1282eaa47"
"digest": "d4fa27a3e215b89d2231d344ec0202e1b8e41ad322deb79c68fd6ca673eae3f7"
},
"arguments": {
"inputs": {
......@@ -92,7 +92,7 @@
"version": "0.1.0",
"python_path": "d3m.primitives.data_transformation.dataframe_to_ndarray.Common",
"name": "DataFrame to ndarray converter",
"digest": "71862085ea87f4f68abc9f49b4fa661b1ee70a4f3a97f1c1bb4343e2d27dbd37"
"digest": "32594c9a3c9bdc6315463fa8c169b18379b7fda7115354360de0d96298cf1960"
},
"arguments": {
"inputs": {
......@@ -113,7 +113,7 @@
"version": "0.0.5",
"python_path": "d3m.primitives.clustering.ssc_admm.Umich",
"name": "SSC_ADMM",
"digest": "b1f41cdd620c8b1d242a258947e2903b0ebfd4bda3189c9c2e5f52cb45d8bfbb"
"digest": "fb6d47bb400d1e33781541b92556e80238cfc7e5b787f37337f959b226111d92"
},
"arguments": {
"inputs": {
......@@ -140,7 +140,7 @@
"version": "0.1.0",
"python_path": "d3m.primitives.data_transformation.ndarray_to_dataframe.Common",
"name": "ndarray to Dataframe converter",
"digest": "801aa292c7b8ceb0a7dba20618aa7949b289551d8cd314e5de14190084200fc9"
"digest": "dbc4bbf143ee01a74a5c3f54ec5daae1b938ee3600fa748ca3d5efe6b013ccb7"
},
"arguments": {
"inputs": {
......@@ -161,7 +161,7 @@
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.construct_predictions.DataFrameCommon",
"name": "Construct pipeline predictions output",
"digest": "cfb2d595652c4ae0d24e67d4cb8e4916c9f3c2753eaccc2935263d054b3682fa"
"digest": "077921b0d6cee9bbda9494bc60c8b48f8287db8d0bff674056a7c9e5cc92ebb9"
},
"arguments": {
"inputs": {
......@@ -180,5 +180,5 @@
]
}
],
"digest": "50f2a2c0414da478db0fba52c6d0b56c1f99dae2a0fd2cbe9eaa8aa31ad74e71"
"digest": "72a87c4b0c9f451349af78d0e4227de38cc8e33f338740b7e9ae6b03c462bb38"
}
\ No newline at end of file
{
"id": "2e3dd164-00a2-447c-8d37-2c94a07ec15f",
"id": "20f0d420-e687-4c4e-829c-fa2d016342e0",
"schema": "https://metadata.datadrivendiscovery.org/schemas/v0/pipeline.json",
"created": "2019-06-16T02:42:47.519367Z",
"created": "2019-06-16T12:15:18.229717Z",
"inputs": [
{
"name": "inputs"
......@@ -21,7 +21,7 @@
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.dataset_to_dataframe.Common",
"name": "Extract a DataFrame from a Dataset",
"digest": "0d46a2c5bc374e305682dc4f1c322518c07638153a8365034a513ea46960802b"
"digest": "e557fc176af67913ed241dbe793cf986439157cfe9c4a12f1aafcba3c07b8b6f"
},
"arguments": {
"inputs": {
......@@ -42,7 +42,7 @@
"version": "0.5.0",
"python_path": "d3m.primitives.data_transformation.column_parser.DataFrameCommon",
"name": "Parses strings into their types",
"digest": "312cacc014497dd674e34765f6eb54430e594c591e760da0383c87844753d2ce"
"digest": "7e16e2b1e559690e221de471826d7d1cd36698bc5140dc00f3c7a6c6b711c3b2"
},
"arguments": {
"inputs": {
......@@ -63,7 +63,7 @@
"version": "0.2.0",
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon",
"name": "Extracts columns by semantic type",
"digest": "297a4943484bcd532650d5727e23b3d11ca702688d7b64dfb5df8bf1282eaa47"
"digest": "d4fa27a3e215b89d2231d344ec0202e1b8e41ad322deb79c68fd6ca673eae3f7"
},
"arguments": {
"inputs": {
......@@ -92,7 +92,7 @@
"version": "0.1.0",
"python_path": "d3m.primitives.data_transformation.dataframe_to_ndarray.Common",
"name": "DataFrame to ndarray converter",
"digest": "71862085ea87f4f68abc9f49b4fa661b1ee70a4f3a97f1c1bb4343e2d27dbd37"
"digest": "32594c9a3c9bdc6315463fa8c169b18379b7fda7115354360de0d96298cf1960"
},
"arguments": {
"inputs": {
......@@ -113,7 +113,7 @@
"version": "0.0.5",
"python_path": "d3m.primitives.clustering.ssc_cvx.Umich",
"name": "SSC_CVX",
"digest": "a31ff5c71f69a12526f223f64d6dd1c57466030ffeae9fc8f9f7593a5d4596db"
"digest": "14273cb74679d0f54792eeac8f091d6fed58e53e163e586006ca7cb34cebf67b"
},
"arguments": {
"inputs": {
......@@ -140,7 +140,7 @@
"version": "0.1.0",
"python_path": "d3m.primitives.data_transformation.ndarray_to_dataframe.Common",
"name": "ndarray to Dataframe converter",
"digest": "801aa292c7b8ceb0a7dba20618aa7949b289551d8cd314e5de14190084200fc9"
"digest": "dbc4bbf143ee01a74a5c3f54ec5daae1b938ee3600fa748ca3d5efe6b013ccb7"
},
"arguments": {
"inputs": {
......@@ -161,7 +161,7 @@
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.construct_predictions.DataFrameCommon",
"name": "Construct pipeline predictions output",
"digest": "cfb2d595652c4ae0d24e67d4cb8e4916c9f3c2753eaccc2935263d054b3682fa"
"digest": "077921b0d6cee9bbda9494bc60c8b48f8287db8d0bff674056a7c9e5cc92ebb9"
},
"arguments": {
"inputs": {
......@@ -180,5 +180,5 @@
]
}
],
"digest": "750c7969c06325f77774b414d4c20758998d14360ac13026c950b5f95ba276f3"
"digest": "fffe8ebb43f085a12d3b19cf154180369fcf03ea9022e74a0bf26e8e9d879b68"
}
\ No newline at end of file
{
"id": "de73f338-846c-4f9a-93c4-e990478e4bd3",
"id": "c67a0c89-db68-4484-886e-b3f7a9a788ab",
"schema": "https://metadata.datadrivendiscovery.org/schemas/v0/pipeline.json",
"created": "2019-06-16T02:42:49.718794Z",
"created": "2019-06-16T12:15:20.395841Z",
"inputs": [
{
"name": "inputs"
......@@ -21,7 +21,7 @@
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.dataset_to_dataframe.Common",
"name": "Extract a DataFrame from a Dataset",
"digest": "0d46a2c5bc374e305682dc4f1c322518c07638153a8365034a513ea46960802b"
"digest": "e557fc176af67913ed241dbe793cf986439157cfe9c4a12f1aafcba3c07b8b6f"
},
"arguments": {
"inputs": {
......@@ -42,7 +42,7 @@
"version": "0.5.0",
"python_path": "d3m.primitives.data_transformation.column_parser.DataFrameCommon",
"name": "Parses strings into their types",
"digest": "312cacc014497dd674e34765f6eb54430e594c591e760da0383c87844753d2ce"
"digest": "7e16e2b1e559690e221de471826d7d1cd36698bc5140dc00f3c7a6c6b711c3b2"
},
"arguments": {
"inputs": {
......@@ -63,7 +63,7 @@
"version": "0.2.0",
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon",
"name": "Extracts columns by semantic type",
"digest": "297a4943484bcd532650d5727e23b3d11ca702688d7b64dfb5df8bf1282eaa47"
"digest": "d4fa27a3e215b89d2231d344ec0202e1b8e41ad322deb79c68fd6ca673eae3f7"
},
"arguments": {
"inputs": {
......@@ -92,7 +92,7 @@
"version": "0.1.0",
"python_path": "d3m.primitives.data_transformation.dataframe_to_ndarray.Common",
"name": "DataFrame to ndarray converter",
"digest": "71862085ea87f4f68abc9f49b4fa661b1ee70a4f3a97f1c1bb4343e2d27dbd37"
"digest": "32594c9a3c9bdc6315463fa8c169b18379b7fda7115354360de0d96298cf1960"
},
"arguments": {
"inputs": {
......@@ -113,7 +113,7 @@
"version": "0.0.5",
"python_path": "d3m.primitives.clustering.ssc_omp.Umich",
"name": "SSC_OMP",
"digest": "9e8a0a0de0c19dbc025808e63b8761f026a65835e79540541efbb377322f1f70"
"digest": "e406733acfb2bb4ef506673ad11ad5def9b74d09f162200aa6ca1a68344bc1e2"
},
"arguments": {
"inputs": {
......@@ -140,7 +140,7 @@
"version": "0.1.0",
"python_path": "d3m.primitives.data_transformation.ndarray_to_dataframe.Common",
"name": "ndarray to Dataframe converter",
"digest": "801aa292c7b8ceb0a7dba20618aa7949b289551d8cd314e5de14190084200fc9"
"digest": "dbc4bbf143ee01a74a5c3f54ec5daae1b938ee3600fa748ca3d5efe6b013ccb7"
},
"arguments": {
"inputs": {
......@@ -161,7 +161,7 @@
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.construct_predictions.DataFrameCommon",
"name": "Construct pipeline predictions output",
"digest": "cfb2d595652c4ae0d24e67d4cb8e4916c9f3c2753eaccc2935263d054b3682fa"
"digest": "077921b0d6cee9bbda9494bc60c8b48f8287db8d0bff674056a7c9e5cc92ebb9"
},
"arguments": {
"inputs": {
......@@ -180,5 +180,5 @@
]
}
],
"digest": "1b4b9d6d2474dde160449388c2fbfc30b2dd49e5a0250b639e30f09716548370"
"digest": "28d20c711049c3e0f2bcbceb5ca4191909e6c3262a259de558608d598711b2e7"
}
\ No newline at end of file
{
"id": "23f2d5f6-f59c-4f97-bd81-4ec79c95b01a",
"id": "21a7b017-33c9-465e-a6d5-5895542a9f47",
"schema": "https://metadata.datadrivendiscovery.org/schemas/v0/pipeline.json",
"created": "2019-06-16T02:42:34.375181Z",
"created": "2019-06-16T12:15:04.882551Z",
"inputs": [
{
"name": "inputs"
......@@ -21,7 +21,7 @@
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.dataset_to_dataframe.Common",
"name": "Extract a DataFrame from a Dataset",
"digest": "0d46a2c5bc374e305682dc4f1c322518c07638153a8365034a513ea46960802b"
"digest": "e557fc176af67913ed241dbe793cf986439157cfe9c4a12f1aafcba3c07b8b6f"
},
"arguments": {
"inputs": {
......@@ -42,7 +42,7 @@
"version": "0.5.0",
"python_path": "d3m.primitives.data_transformation.column_parser.DataFrameCommon",
"name": "Parses strings into their types",
"digest": "312cacc014497dd674e34765f6eb54430e594c591e760da0383c87844753d2ce"
"digest": "7e16e2b1e559690e221de471826d7d1cd36698bc5140dc00f3c7a6c6b711c3b2"
},
"arguments": {
"inputs": {
......@@ -63,7 +63,7 @@
"version": "0.2.0",
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon",
"name": "Extracts columns by semantic type",
"digest": "297a4943484bcd532650d5727e23b3d11ca702688d7b64dfb5df8bf1282eaa47"
"digest": "d4fa27a3e215b89d2231d344ec0202e1b8e41ad322deb79c68fd6ca673eae3f7"
},
"arguments": {
"inputs": {
......@@ -92,7 +92,7 @@
"version": "0.2.0",
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon",
"name": "Extracts columns by semantic type",
"digest": "297a4943484bcd532650d5727e23b3d11ca702688d7b64dfb5df8bf1282eaa47"
"digest": "d4fa27a3e215b89d2231d344ec0202e1b8e41ad322deb79c68fd6ca673eae3f7"
},
"arguments": {
"inputs": {
......@@ -121,7 +121,7 @@
"version": "0.1.0",
"python_path": "d3m.primitives.data_transformation.dataframe_to_ndarray.Common",
"name": "DataFrame to ndarray converter",
"digest": "71862085ea87f4f68abc9f49b4fa661b1ee70a4f3a97f1c1bb4343e2d27dbd37"
"digest": "32594c9a3c9bdc6315463fa8c169b18379b7fda7115354360de0d96298cf1960"
},
"arguments": {
"inputs": {
......@@ -142,7 +142,7 @@
"version": "0.0.5",
"python_path": "d3m.primitives.data_compression.grasta.Umich",
"name": "GRASTA",
"digest": "c89c73ec4f82cfb805e3c22c45fb29aecfd26bb5909adbc16cdbe9c7f7f6e691"
"digest": "e39511990383491ff3786282b5476bff14a427a41cc855b48425ca8b4dbd2d7f"
},
"arguments": {
"inputs": {
......@@ -163,7 +163,7 @@
"version": "0.1.0",
"python_path": "d3m.primitives.data_transformation.ndarray_to_dataframe.Common",
"name": "ndarray to Dataframe converter",
"digest": "801aa292c7b8ceb0a7dba20618aa7949b289551d8cd314e5de14190084200fc9"
"digest": "dbc4bbf143ee01a74a5c3f54ec5daae1b938ee3600fa748ca3d5efe6b013ccb7"
},
"arguments": {
"inputs": {
......@@ -181,10 +181,10 @@
"type": "PRIMITIVE",
"primitive": {
"id": "f40ffdc0-1d6d-3234-8fd0-a3e4d7a136a7",
"version": "2019.4.4",
"version": "2019.6.7",
"python_path": "d3m.primitives.regression.linear_svr.SKlearn",
"name": "sklearn.svm.classes.LinearSVR",
"digest": "9486ccb5f57d8733be166c41021fa94f3db0669d11e7f66e898a7925b32dafea"
"digest": "f318c118ce1bbdac8d3f2faa8377120cb3dbc7904d3de91117adba81fc289087"
},
"arguments": {
"inputs": {
......@@ -209,7 +209,7 @@
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.construct_predictions.DataFrameCommon",
"name": "Construct pipeline predictions output",
"digest": "cfb2d595652c4ae0d24e67d4cb8e4916c9f3c2753eaccc2935263d054b3682fa"
"digest": "077921b0d6cee9bbda9494bc60c8b48f8287db8d0bff674056a7c9e5cc92ebb9"
},
"arguments": {
"inputs": {
......@@ -228,5 +228,5 @@
]
}
],
"digest": "7d94a45205728590d36f17c96b119849df67ffd90a7259e4600c4d72e9a0dc1a"
"digest": "1f6ec2f2800c98c647119c6950771f6c84e3c7920161e680f12f109ab9295855"
}
\ No newline at end of file
{
"id": "d208e43f-6064-40b2-942a-5b5722c2b55c",
"id": "2ff77303-f819-4fdb-8786-7e4d99d969f3",
"schema": "https://metadata.datadrivendiscovery.org/schemas/v0/pipeline.json",
"created": "2019-06-16T02:42:19.220686Z",
"created": "2019-06-16T12:14:50.263642Z",
"inputs": [
{
"name": "inputs"
......@@ -21,7 +21,7 @@
"version": "0.2.0",
"python_path": "d3m.primitives.data_transformation.denormalize.Common",
"name": "Denormalize datasets",
"digest": "00ae7955cc0abce2a3ddee96247209f3395009ae6553c7ce8caa577e402754db"
"digest": "afca078f05899b9f329e1b8cc0973848e39e83a7521d2cade81c1fbad5cf8139"
},
"arguments": {
"inputs": {
......@@ -40,9 +40,9 @@
"primitive": {
"id": "952b659c-d290-465b-9e89-160947e29c06",
"version": "0.1.4",
"python_path": "d3m.primitives.data_preprocessing.targets_reader.TargetsReader",
"python_path": "d3m.primitives.data_preprocessing.targets_reader.BBN",
"name": "Targets Reader",
"digest": "2f355585fcd90d157f7ab19a4797677aa04ed2de1622fe32cac3a841340edccc"
"digest": "ab330e6aa44b5a7faa7776724bd37d6dba7e867b6b102ddec59ff78fc53efc8a"
},
"arguments": {
"inputs": {
......@@ -61,9 +61,9 @@
"primitive": {
"id": "503e69a1-5fc4-4f14-912a-4b564cb1b171",
"version": "0.1.4",
"python_path": "d3m.primitives.data_preprocessing.audio_reader.AudioReader",
"python_path": "d3m.primitives.data_preprocessing.audio_reader.BBN",
"name": "Audio Reader",
"digest": "18ad409a1ec0b7b866fbcfbec416cb74a487015e4fa8c05fe44fb72f65ffbce2"
"digest": "87248372f63df682d44e45deba53d0e244916415fce9c0fc5499d4a7d6a7f0ea"
},
"arguments": {
"inputs": {
......@@ -84,7 +84,7 @@
"version": "0.0.5",
"python_path": "d3m.primitives.feature_extraction.audio_featurization.Umich",
"name": "AudioFeaturization",
"digest": "82245a082aaf3343d5577673a320d04ac85c53dcf1afb7322b7208c022636414"
"digest": "38fc8e4e97dc21c5a20f589a094ff43a3d50da6e81c51adce0c291ce7ccaa052"
},
"arguments": {
"inputs": {
......@@ -105,7 +105,7 @@
"version": "0.4.0",
"python_path": "d3m.primitives.classification.random_forest.DataFrameCommon",
"name": "Random forest classifier",
"digest": "376c92646c5dedd0d45f9e7a38f4225bbc23024036c5188eb90cafe9e3b4f7ed"
"digest": "a4cdc23120dbf003528b26c405e2dac56b356e4eacc8ccb3f003aa69c0d10562"
},
"arguments": {
"inputs": {
......@@ -130,7 +130,7 @@
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.dataset_to_dataframe.Common",
"name": "Extract a DataFrame from a Dataset",
"digest": "0d46a2c5bc374e305682dc4f1c322518c07638153a8365034a513ea46960802b"
"digest": "e557fc176af67913ed241dbe793cf986439157cfe9c4a12f1aafcba3c07b8b6f"
},
"arguments": {
"inputs": {
......@@ -157,7 +157,7 @@
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.construct_predictions.DataFrameCommon",
"name": "Construct pipeline predictions output",
"digest": "cfb2d595652c4ae0d24e67d4cb8e4916c9f3c2753eaccc2935263d054b3682fa"
"digest": "077921b0d6cee9bbda9494bc60c8b48f8287db8d0bff674056a7c9e5cc92ebb9"
},
"arguments": {
"inputs": {
......@@ -176,5 +176,5 @@
]
}
],
"digest": "45b83cd4da2da40a6a066feca5627837917f2e3a951d109cfca07dd8e2238d14"
"digest": "75252b9545e44782519b0abf42ae29398c38d9789bdd9ebe877d9012149b88ca"
}
\ No newline at end of file
{
"id": "979645e1-3a89-473e-bbff-328270314950",
"id": "ce9911b6-5c0c-4374-a1ef-b31b46a382f1",
"schema": "https://metadata.datadrivendiscovery.org/schemas/v0/pipeline.json",
"created": "2019-06-16T02:42:14.245238Z",
"created": "2019-06-16T12:14:45.320130Z",
"inputs": [
{
"name": "inputs"
......@@ -21,7 +21,7 @@
"version": "0.2.0",
"python_path": "d3m.primitives.data_transformation.denormalize.Common",
"name": "Denormalize datasets",
"digest": "00ae7955cc0abce2a3ddee96247209f3395009ae6553c7ce8caa577e402754db"
"digest": "afca078f05899b9f329e1b8cc0973848e39e83a7521d2cade81c1fbad5cf8139"
},
"arguments": {
"inputs": {
......@@ -42,7 +42,7 @@
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.dataset_to_dataframe.Common",
"name": "Extract a DataFrame from a Dataset",
"digest": "0d46a2c5bc374e305682dc4f1c322518c07638153a8365034a513ea46960802b"
"digest": "e557fc176af67913ed241dbe793cf986439157cfe9c4a12f1aafcba3c07b8b6f"
},
"arguments": {
"inputs": {
......@@ -63,7 +63,7 @@
"version": "0.2.0",
"python_path": "d3m.primitives.data_preprocessing.image_reader.DataFrameCommon",
"name": "Columns image reader",
"digest": "a8ed92bc3d4625971eb1ef61aa0d6cfd9c2caea4fd3d0e92491bd225c1cfe484"
"digest": "4d08472cb2054e39e07bb0fc377fdfc971517e55beed48f4db6c64276694cad6"
},
"arguments": {
"inputs": {
......@@ -84,7 +84,7 @@
"version": "0.2.0",
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon",
"name": "Extracts columns by semantic type",
"digest": "297a4943484bcd532650d5727e23b3d11ca702688d7b64dfb5df8bf1282eaa47"
"digest": "d4fa27a3e215b89d2231d344ec0202e1b8e41ad322deb79c68fd6ca673eae3f7"
},
"arguments": {
"inputs": {
......@@ -113,7 +113,7 @@
"version": "0.2.0",
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon",
"name": "Extracts columns by semantic type",
"digest": "297a4943484bcd532650d5727e23b3d11ca702688d7b64dfb5df8bf1282eaa47"
"digest": "d4fa27a3e215b89d2231d344ec0202e1b8e41ad322deb79c68fd6ca673eae3f7"
},
"arguments": {
"inputs": {
......@@ -142,7 +142,7 @@
"version": "0.1.0",
"python_path": "d3m.primitives.data_transformation.dataframe_to_ndarray.Common",
"name": "DataFrame to ndarray converter",
"digest": "71862085ea87f4f68abc9f49b4fa661b1ee70a4f3a97f1c1bb4343e2d27dbd37"
"digest": "32594c9a3c9bdc6315463fa8c169b18379b7fda7115354360de0d96298cf1960"
},
"arguments": {
"inputs": {
......@@ -163,7 +163,7 @@
"version": "0.0.5",
"python_path": "d3m.primitives.feature_extraction.vgg16.Umich",
"name": "VGG16",
"digest": "edc7f5a18d1ceffc8f6411471d0ce70a1f7a36d1207e4caea1b7390f1eff050d"
"digest": "dc4b4056ef006e2fac222aeb0061086b561f0d26c1053ff872388f5b2ec64c82"
},
"arguments": {
"inputs": {