Commit 6aaef837 authored by Sujen's avatar Sujen

Merge branch 'isi_update' into 'master'

isi update

See merge request datadrivendiscovery/primitives!174
parents 13a7a324 edac3497
{
"id":"42e376c5-6e93-44f8-b099-04bc8b091ad7",
"schema":"https://metadata.datadrivendiscovery.org/schemas/v0/pipeline.json",
"created":"2019-06-05T03:44:33.899641Z",
"inputs":[
{
"name":"input dataset"
}
],
"outputs":[
{
"data":"steps.6.produce",
"name":"predictions of input dataset"
}
],
"steps":[
{
"type":"PRIMITIVE",
"primitive":{
"id":"f31f8c1f-d1c5-43e5-a4b2-2ae4a761ef2e",
"version":"0.2.0",
"python_path":"d3m.primitives.data_transformation.denormalize.Common",
"name":"Denormalize datasets",
"digest":"406f9beb9ad211f4fde228be374f07a427d6b2b45aba4f1f4ac1b5510ae84e3e"
},
"arguments":{
"inputs":{
"type":"CONTAINER",
"data":"inputs.0"
}
},
"outputs":[
{
"id":"produce"
}
],
"hyperparams":{
"starting_resource":{
"type":"VALUE",
"data":null
},
"recursive":{
"type":"VALUE",
"data":true
},
"many_to_many":{
"type":"VALUE",
"data":false
},
"discard_not_joined_tabular_resources":{
"type":"VALUE",
"data":false
}
}
},
{
"type":"PRIMITIVE",
"primitive":{
"id":"dbb3792d-a44b-4941-a88e-5520c0a23488",
"version":"0.1.0",
"python_path":"d3m.primitives.data_transformation.normalize_graphs.Common",
"name":"Normalize graphs",
"digest":"19b36c34cf5b5bdbd9e9c9af319e409893b1dc6538da0e2b1b1ab660abcf7979"
},
"arguments":{
"inputs":{
"type":"CONTAINER",
"data":"steps.0.produce"
}
},
"outputs":[
{
"id":"produce"
}
]
},
{
"type":"PRIMITIVE",
"primitive":{
"id":"dfb8c278-5382-47cd-bd39-f9429890a239",
"version":"1.0.0",
"python_path":"d3m.primitives.data_transformation.graph_to_edge_list.DSBOX",
"name":"Extract graph tables from Dataset into list of DataFrame",
"digest":"7d4ac2ca05dc06953b2df24b68a3d36ce2f9e8d7c5b7ec07862eb1e943a50c4a"
},
"arguments":{
"inputs":{
"type":"CONTAINER",
"data":"steps.1.produce"
}
},
"outputs":[
{
"id":"produce"
}
]
},
{
"type":"PRIMITIVE",
"primitive":{
"id":"4b42ce1e-9b98-4a25-b68e-fad13311eb65",
"version":"0.3.0",
"python_path":"d3m.primitives.data_transformation.dataset_to_dataframe.Common",
"name":"Extract a DataFrame from a Dataset",
"digest":"262d651c0711efd819511cb67355d9c247c7c44470c2281fa495e8701d5d3ecb"
},
"arguments":{
"inputs":{
"type":"CONTAINER",
"data":"steps.0.produce"
}
},
"outputs":[
{
"id":"produce"
}
]
},
{
"type":"PRIMITIVE",
"primitive":{
"id":"4503a4c6-42f7-45a1-a1d4-ed69699cf5e1",
"version":"0.2.0",
"python_path":"d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon",
"name":"Extracts columns by semantic type",
"digest":"8d9e45e2eca7ac7a5510df443b041449cb558e751dd3876223b25f9f590246e3"
},
"arguments":{
"inputs":{
"type":"CONTAINER",
"data":"steps.3.produce"
}
},
"outputs":[
{
"id":"produce"
}
],
"hyperparams":{
"semantic_types":{
"type":"VALUE",
"data":[
"https://metadata.datadrivendiscovery.org/types/TrueTarget"
]
}
}
},
{
"type":"PRIMITIVE",
"primitive":{
"id":"48572851-b86b-4fda-961d-f3f466adb58e",
"version":"1.0.0",
"python_path":"d3m.primitives.feature_construction.graph_transformer.GCN",
"name":"GCN",
"digest":"0fac4a956488c6285c6b5e1ee853bf78297e67693764f0492301f91bf04000ef"
},
"arguments":{
"inputs":{
"type":"CONTAINER",
"data":"steps.2.produce"
},
"outputs":{
"type":"CONTAINER",
"data":"steps.4.produce"
}
},
"outputs":[
{
"id":"produce"
}
]
},
{
"type":"PRIMITIVE",
"primitive":{
"id":"1dd82833-5692-39cb-84fb-2455683075f3",
"version":"v2019.4.4",
"python_path":"d3m.primitives.classification.random_forest.SKlearn",
"name":"sklearn.ensemble.forest.RandomForestClassifier",
"digest":"7ea6cf52c696329ea9270dfc9d1cea219de388b5714ad850c6a055bd9b699ed9"
},
"arguments":{
"inputs":{
"type":"CONTAINER",
"data":"steps.5.produce"
},
"outputs":{
"type":"CONTAINER",
"data":"steps.4.produce"
}
},
"outputs":[
{
"id":"produce"
}
],
"hyperparams":{
"max_depth":{
"type":"VALUE",
"data":{
"case":"int",
"value":30
}
},
"min_samples_leaf":{
"type":"VALUE",
"data":{
"case":"absolute",
"value":2
}
},
"min_samples_split":{
"type":"VALUE",
"data":{
"case":"absolute",
"value":2
}
},
"max_features":{
"type":"VALUE",
"data":{
"case":"calculated",
"value":"sqrt"
}
},
"n_estimators":{
"type":"VALUE",
"data":100
},
"add_index_columns":{
"type":"VALUE",
"data":true
},
"use_semantic_types":{
"type":"VALUE",
"data":false
},
"error_on_no_input":{
"type":"VALUE",
"data":true
}
}
}
],
"name":"ISI_gcn:140244824113296",
"description":"",
"digest":"e55fbfb13e9d0e851477fa7f83175178289e03d4178f71e4487d3daa72d76464",
"pipeline_rank":1.0,
"metric":"accuracy",
"metric_value":1.0,
"template_name":"ISI_gcn",
"template_task":"{'LINK_PREDICTION', 'COMMUNITY_DETECTION', 'VERTEX_NOMINATION', 'COLLABORATIVE_FILTERING'}",
"template_subtask":"{'OVERLAPPING', 'NONE', 'NONOVERLAPPING'}",
"problem_taskType":"vertexNomination",
"problem_taskSubType":"NONE"
}
\ No newline at end of file
......@@ -13,7 +13,7 @@
"installation": [
{
"type": "PIP",
"package_uri": "git+https://github.com/brekelma/dsbox_graphs@18484bcc1499ba3c5595ac9ed2abb9e7e367d71f#egg=dsbox_graphs"
"package_uri": "git+https://github.com/brekelma/dsbox_graphs@873a9827c96b32dbda45b4a319df8c9f04a4446c#egg=dsbox_graphs"
}
],
"algorithm_types": [
......@@ -201,5 +201,5 @@
},
"structural_type": "graph_dataset_to_list.GraphDatasetToList",
"description": "A primitive which extracts a DataFrame out of a Dataset.\n\nAttributes\n----------\nmetadata : PrimitiveMetadata\n Primitive's metadata. Available as a class attribute.\nlogger : Logger\n Primitive's logger. Available as a class attribute.\nhyperparams : Hyperparams\n Hyperparams passed to the constructor.\nrandom_seed : int\n Random seed passed to the constructor.\ndocker_containers : Dict[str, DockerContainer]\n A dict mapping Docker image keys from primitive's metadata to (named) tuples containing\n container's address under which the container is accessible by the primitive, and a\n dict mapping exposed ports to ports on that address.\nvolumes : Dict[str, str]\n A dict mapping volume keys from primitive's metadata to file and directory paths\n where downloaded and extracted files are available to the primitive.\ntemporary_directory : str\n An absolute path to a temporary directory a primitive can use to store any files\n for the duration of the current pipeline run phase. Directory is automatically\n cleaned up after the current pipeline run phase finishes.",
"digest": "7d4ac2ca05dc06953b2df24b68a3d36ce2f9e8d7c5b7ec07862eb1e943a50c4a"
"digest": "833a0c82cbf7eba638df59de0d992d75bf0d6b484cb66d3034dc79dfc3339300"
}
......@@ -16,7 +16,7 @@
"installation": [
{
"type": "PIP",
"package_uri": "git+https://github.com/brekelma/dsbox_corex@8deaa1b9e3a7cf5200595f83d6ae35bb74572a62#egg=dsbox-corex"
"package_uri": "git+https://github.com/brekelma/dsbox_corex@37a754bbd020169e5811e0c535c16b3ef060aba1#egg=dsbox-corex"
}
],
"algorithm_types": [
......@@ -214,5 +214,5 @@
}
},
"structural_type": "corex_continuous.CorexContinuous",
"digest": "b931be386707861135a3e5d927f77fca6c8ba0a38723e2869a631fa99abf551d"
"digest": "d2ad4c5713b239124e7b8ce5473ee27287f817c707c8979a787269d9860cfc91"
}
......@@ -4,8 +4,8 @@
"version": "1.0.0",
"name": "Echo",
"description": "Keras NN implementing the information bottleneck method with Echo Noise to calculate I(X:Z), where Z also trained to maximize I(X:Y) for label Y. Control tradeoff using 'label_beta param'\n\nAttributes\n----------\nmetadata : PrimitiveMetadata\n Primitive's metadata. Available as a class attribute.\nlogger : Logger\n Primitive's logger. Available as a class attribute.\nhyperparams : Hyperparams\n Hyperparams passed to the constructor.\nrandom_seed : int\n Random seed passed to the constructor.\ndocker_containers : Dict[str, DockerContainer]\n A dict mapping Docker image keys from primitive's metadata to (named) tuples containing\n container's address under which the container is accessible by the primitive, and a\n dict mapping exposed ports to ports on that address.\nvolumes : Dict[str, str]\n A dict mapping volume keys from primitive's metadata to file and directory paths\n where downloaded and extracted files are available to the primitive.\ntemporary_directory : str\n An absolute path to a temporary directory a primitive can use to store any files\n for the duration of the current pipeline run phase. Directory is automatically\n cleaned up after the current pipeline run phase finishes.",
"python_path": "d3m.primitives.feature_construction.corex_supervised.EchoIBClf",
"original_python_path": "echo_sae.EchoClassification",
"python_path": "d3m.primitives.feature_construction.corex_supervised.EchoIB",
"original_python_path": "echo_ib.EchoIB",
"source": {
"name": "ISI",
"contact": "mailto:brekelma@usc.edu",
......@@ -16,7 +16,7 @@
"installation": [
{
"type": "PIP",
"package_uri": "git+https://github.com/brekelma/dsbox_corex@8deaa1b9e3a7cf5200595f83d6ae35bb74572a62#egg=dsbox-corex"
"package_uri": "git+https://github.com/brekelma/dsbox_corex@37a754bbd020169e5811e0c535c16b3ef060aba1#egg=dsbox-corex"
}
],
"algorithm_types": [
......@@ -32,8 +32,8 @@
"class_type_arguments": {
"Inputs": "d3m.container.pandas.DataFrame",
"Outputs": "d3m.container.pandas.DataFrame",
"Params": "echo_sae.EchoSAEc_Params",
"Hyperparams": "echo_sae.EchoSAE_Hyperparams"
"Params": "echo_ib.EchoIB_Params",
"Hyperparams": "echo_ib.EchoIB_Hyperparams"
},
"interfaces_version": "2019.5.8",
"interfaces": [
......@@ -91,6 +91,28 @@
],
"description": "whether to use a convolutional architecture"
},
"task": {
"type": "d3m.metadata.hyperparams.Enumeration",
"default": "REGRESSION",
"structural_type": "str",
"semantic_types": [
"https://metadata.datadrivendiscovery.org/types/ControlParameter"
],
"description": "task type",
"values": [
"CLASSIFICATION",
"REGRESSION"
]
},
"use_as_modeling": {
"type": "d3m.metadata.hyperparams.UniformBool",
"default": false,
"structural_type": "bool",
"semantic_types": [
"https://metadata.datadrivendiscovery.org/types/ControlParameter"
],
"description": "whether to return constructed features AND predictions (else, used for modeling i.e. only predictions"
},
"error_on_no_input": {
"type": "d3m.metadata.hyperparams.UniformBool",
"default": true,
......@@ -117,7 +139,7 @@
},
"arguments": {
"hyperparams": {
"type": "echo_sae.EchoSAE_Hyperparams",
"type": "echo_ib.EchoIB_Hyperparams",
"kind": "RUNTIME"
},
"timeout": {
......@@ -143,7 +165,7 @@
"kind": "PIPELINE"
},
"params": {
"type": "echo_sae.EchoSAEc_Params",
"type": "echo_ib.EchoIB_Params",
"kind": "RUNTIME"
}
},
......@@ -157,7 +179,7 @@
"type": "typing.Dict[str, typing.Union[d3m.metadata.base.Metadata, type]]"
},
"hyperparams": {
"type": "echo_sae.EchoSAE_Hyperparams"
"type": "echo_ib.EchoIB_Hyperparams"
}
},
"returns": "typing.Union[NoneType, d3m.metadata.base.DataMetadata]",
......@@ -196,7 +218,7 @@
"get_params": {
"kind": "OTHER",
"arguments": [],
"returns": "echo_sae.EchoSAEc_Params",
"returns": "echo_ib.EchoIB_Params",
"description": "Returns parameters of this primitive.\n\nParameters are all parameters of the primitive which can potentially change during a life-time of\na primitive. Parameters which cannot are passed through constructor.\n\nParameters should include all data which is necessary to create a new instance of this primitive\nbehaving exactly the same as this instance, when the new instance is created by passing the same\nparameters to the class constructor and calling ``set_params``.\n\nNo other arguments to the method are allowed (except for private arguments).\n\nReturns\n-------\nParams\n An instance of parameters."
},
"multi_produce": {
......@@ -259,6 +281,6 @@
"output_columns": "typing.Union[NoneType, list, pandas.core.indexes.base.Index]"
}
},
"structural_type": "echo_sae.EchoClassification",
"digest": "7313bf031837a2fc3ad6c90ba70b77b2d13238c6cf0a0ba5bd519a8ad05c2d6a"
"structural_type": "echo_ib.EchoIB",
"digest": "04b959a35427554753b22a831aa1b8e043e181a7dcfc9a271d1ecb10cf0d3c15"
}
......@@ -16,7 +16,7 @@
"installation": [
{
"type": "PIP",
"package_uri": "git+https://github.com/brekelma/dsbox_corex@8deaa1b9e3a7cf5200595f83d6ae35bb74572a62#egg=dsbox-corex"
"package_uri": "git+https://github.com/brekelma/dsbox_corex@37a754bbd020169e5811e0c535c16b3ef060aba1#egg=dsbox-corex"
}
],
"algorithm_types": [
......@@ -261,5 +261,5 @@
}
},
"structural_type": "corex_text.CorexText",
"digest": "fadd46bebc3cbae41ba71994dad8a67455c4fe0416d7b322c68ae47cb70ddf5d"
"digest": "906a7102efbbc97e963d545b6fea7a16ea822c9e5e45c345fb3b776dfe1ca151"
}
{
"id":"42e376c5-6e93-44f8-b099-04bc8b091ad7",
"schema":"https://metadata.datadrivendiscovery.org/schemas/v0/pipeline.json",
"created":"2019-06-05T03:44:33.899641Z",
"inputs":[
{
"name":"input dataset"
}
],
"outputs":[
{
"data":"steps.6.produce",
"name":"predictions of input dataset"
}
],
"steps":[
{
"type":"PRIMITIVE",
"primitive":{
"id":"f31f8c1f-d1c5-43e5-a4b2-2ae4a761ef2e",
"version":"0.2.0",
"python_path":"d3m.primitives.data_transformation.denormalize.Common",
"name":"Denormalize datasets",
"digest":"406f9beb9ad211f4fde228be374f07a427d6b2b45aba4f1f4ac1b5510ae84e3e"
},
"arguments":{
"inputs":{
"type":"CONTAINER",
"data":"inputs.0"
}
},
"outputs":[
{
"id":"produce"
}
],
"hyperparams":{
"starting_resource":{
"type":"VALUE",
"data":null
},
"recursive":{
"type":"VALUE",
"data":true
},
"many_to_many":{
"type":"VALUE",
"data":false
},
"discard_not_joined_tabular_resources":{
"type":"VALUE",
"data":false
}
}
},
{
"type":"PRIMITIVE",
"primitive":{
"id":"dbb3792d-a44b-4941-a88e-5520c0a23488",
"version":"0.1.0",
"python_path":"d3m.primitives.data_transformation.normalize_graphs.Common",
"name":"Normalize graphs",
"digest":"19b36c34cf5b5bdbd9e9c9af319e409893b1dc6538da0e2b1b1ab660abcf7979"
},
"arguments":{
"inputs":{
"type":"CONTAINER",
"data":"steps.0.produce"
}
},
"outputs":[
{
"id":"produce"
}
]
},
{
"type":"PRIMITIVE",
"primitive":{
"id":"dfb8c278-5382-47cd-bd39-f9429890a239",
"version":"1.0.0",
"python_path":"d3m.primitives.data_transformation.graph_to_edge_list.DSBOX",
"name":"Extract graph tables from Dataset into list of DataFrame",
"digest":"7d4ac2ca05dc06953b2df24b68a3d36ce2f9e8d7c5b7ec07862eb1e943a50c4a"
},
"arguments":{
"inputs":{
"type":"CONTAINER",
"data":"steps.1.produce"
}
},
"outputs":[
{
"id":"produce"
}
]
},
{
"type":"PRIMITIVE",
"primitive":{
"id":"4b42ce1e-9b98-4a25-b68e-fad13311eb65",
"version":"0.3.0",
"python_path":"d3m.primitives.data_transformation.dataset_to_dataframe.Common",
"name":"Extract a DataFrame from a Dataset",
"digest":"262d651c0711efd819511cb67355d9c247c7c44470c2281fa495e8701d5d3ecb"
},
"arguments":{
"inputs":{
"type":"CONTAINER",
"data":"steps.0.produce"
}
},
"outputs":[
{
"id":"produce"
}
]
},
{
"type":"PRIMITIVE",
"primitive":{
"id":"4503a4c6-42f7-45a1-a1d4-ed69699cf5e1",
"version":"0.2.0",
"python_path":"d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon",
"name":"Extracts columns by semantic type",
"digest":"8d9e45e2eca7ac7a5510df443b041449cb558e751dd3876223b25f9f590246e3"
},
"arguments":{
"inputs":{
"type":"CONTAINER",
"data":"steps.3.produce"
}
},
"outputs":[
{
"id":"produce"
}
],
"hyperparams":{
"semantic_types":{
"type":"VALUE",
"data":[
"https://metadata.datadrivendiscovery.org/types/TrueTarget"
]
}
}
},
{
"type":"PRIMITIVE",
"primitive":{
"id":"48572851-b86b-4fda-961d-f3f466adb58e",
"version":"1.0.0",
"python_path":"d3m.primitives.feature_construction.graph_transformer.GCN",
"name":"GCN",
"digest":"0fac4a956488c6285c6b5e1ee853bf78297e67693764f0492301f91bf04000ef"
},
"arguments":{
"inputs":{
"type":"CONTAINER",
"data":"steps.2.produce"
},
"outputs":{
"type":"CONTAINER",
"data":"steps.4.produce"
}
},
"outputs":[
{
"id":"produce"
}
]
},
{
"type":"PRIMITIVE",
"primitive":{
"id":"1dd82833-5692-39cb-84fb-2455683075f3",
"version":"v2019.4.4",
"python_path":"d3m.primitives.classification.random_forest.SKlearn",
"name":"sklearn.ensemble.forest.RandomForestClassifier",
"digest":"7ea6cf52c696329ea9270dfc9d1cea219de388b5714ad850c6a055bd9b699ed9"
},
"arguments":{
"inputs":{
"type":"CONTAINER",
"data":"steps.5.produce"
},
"outputs":{
"type":"CONTAINER",
"data":"steps.4.produce"
}
},
"outputs":[
{
"id":"produce"
}
],
"hyperparams":{
"max_depth":{
"type":"VALUE",
"data":{
"case":"int",
"value":30
}
},
"min_samples_leaf":{
"type":"VALUE",
"data":{
"case":"absolute",
"value":2
}
},
"min_samples_split":{
"type":"VALUE",
"data":{
"case":"absolute",
"value":2
}
},
"max_features":{
"type":"VALUE",
"data":{
"case":"calculated",
"value":"sqrt"
}
},
"n_estimators":{
"type":"VALUE",
"data":100
},
"add_index_columns":{
"type":"VALUE",