Commit 690764df authored by Sujen's avatar Sujen

Merge branch 'michigan/develop' into 'master'

Updates to Michigan pipeline

See merge request datadrivendiscovery/primitives!296
parents 52354188 41bd46f9
{
"id": "e71678ce-b182-4f37-8217-df0be3b299e3",
"id": "3e17b696-6277-4204-bcbc-9c9b99a91cee",
"schema": "https://metadata.datadrivendiscovery.org/schemas/v0/pipeline.json",
"created": "2019-06-19T03:18:40.873932Z",
"created": "2019-06-20T15:32:24.744786Z",
"inputs": [
{
"name": "inputs"
......@@ -21,7 +21,7 @@
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.dataset_to_dataframe.Common",
"name": "Extract a DataFrame from a Dataset",
"digest": "45f8322097914f9c95c4f9a8224d02db5d79b7166c74115e2eea7b23ccc13510"
"digest": "0d46a2c5bc374e305682dc4f1c322518c07638153a8365034a513ea46960802b"
},
"arguments": {
"inputs": {
......@@ -42,7 +42,7 @@
"version": "0.5.0",
"python_path": "d3m.primitives.data_transformation.column_parser.DataFrameCommon",
"name": "Parses strings into their types",
"digest": "d41ad0c56ef55a233b21f4a4d8df1ac782aca7a78ef98dbfb72215690b3e9850"
"digest": "312cacc014497dd674e34765f6eb54430e594c591e760da0383c87844753d2ce"
},
"arguments": {
"inputs": {
......@@ -60,10 +60,10 @@
"type": "PRIMITIVE",
"primitive": {
"id": "4503a4c6-42f7-45a1-a1d4-ed69699cf5e1",
"version": "0.3.0",
"version": "0.2.0",
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon",
"name": "Extracts columns by semantic type",
"digest": "e91e0f7569ad53b6d4b8c01641f80fb0aa764b5dd3ae71dd2fbb433fa62c7f81"
"digest": "297a4943484bcd532650d5727e23b3d11ca702688d7b64dfb5df8bf1282eaa47"
},
"arguments": {
"inputs": {
......@@ -92,7 +92,7 @@
"version": "0.1.0",
"python_path": "d3m.primitives.data_transformation.dataframe_to_ndarray.Common",
"name": "DataFrame to ndarray converter",
"digest": "acd6cfebb0d83da23e3b93034471ca6f04fc2478d2105e13518d6c76c850b676"
"digest": "71862085ea87f4f68abc9f49b4fa661b1ee70a4f3a97f1c1bb4343e2d27dbd37"
},
"arguments": {
"inputs": {
......@@ -113,7 +113,7 @@
"version": "0.0.5",
"python_path": "d3m.primitives.clustering.ekss.Umich",
"name": "EKSS",
"digest": "dd4b50da6cade6e2835ef617a8edeae39ce0c7209d616f5f501efcdaac7ea73d"
"digest": "b5106ae7bc0ca2922d32c84ea1dba7e78ff8f7adff13ef80d1393010cb5f2444"
},
"arguments": {
"inputs": {
......@@ -140,7 +140,7 @@
"version": "0.1.0",
"python_path": "d3m.primitives.data_transformation.ndarray_to_dataframe.Common",
"name": "ndarray to Dataframe converter",
"digest": "7228a01faeab36d201bbe44a87c8b256d91dd03a458c0d589116c8db3f022bb4"
"digest": "801aa292c7b8ceb0a7dba20618aa7949b289551d8cd314e5de14190084200fc9"
},
"arguments": {
"inputs": {
......@@ -161,7 +161,7 @@
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.construct_predictions.DataFrameCommon",
"name": "Construct pipeline predictions output",
"digest": "53087aaa6baf0ccc96b6525ca5b79fd4e51b4cce996ab39773a9b0b3e746bf05"
"digest": "cfb2d595652c4ae0d24e67d4cb8e4916c9f3c2753eaccc2935263d054b3682fa"
},
"arguments": {
"inputs": {
......@@ -180,5 +180,5 @@
]
}
],
"digest": "d18181c1d3942add499a6ee916404877bb4cc5e3853b4cf0e95d482649411c49"
"digest": "410f87e4d8a48f422d4f0ae5411d424ffe767e9f0737b06ab339420d4db492fe"
}
\ No newline at end of file
......@@ -21,7 +21,7 @@
"installation": [
{
"type": "PIP",
"package_uri": "git+https://github.com/dvdmjohnson/d3m_michigan_primitives.git@98e685e0d16f754caedd1e50afbc1e0d0aa28842#egg=spider"
"package_uri": "git+https://github.com/dvdmjohnson/d3m_michigan_primitives.git@8135efdd2b88e99cd85dd5be6c82bcd64f351e8e#egg=spider"
},
{
"type": "UBUNTU",
......@@ -284,5 +284,5 @@
}
},
"structural_type": "spider.cluster.ekss.ekss.EKSS",
"digest": "dd4b50da6cade6e2835ef617a8edeae39ce0c7209d616f5f501efcdaac7ea73d"
"digest": "b5106ae7bc0ca2922d32c84ea1dba7e78ff8f7adff13ef80d1393010cb5f2444"
}
{
"id": "e91e3130-73f7-4be2-8b2c-164dc7594173",
"id": "0d5f2237-ba6b-4c0f-b82c-766626ef84d2",
"schema": "https://metadata.datadrivendiscovery.org/schemas/v0/pipeline.json",
"created": "2019-06-19T03:18:38.554743Z",
"created": "2019-06-20T15:32:22.254978Z",
"inputs": [
{
"name": "inputs"
......@@ -21,7 +21,7 @@
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.dataset_to_dataframe.Common",
"name": "Extract a DataFrame from a Dataset",
"digest": "45f8322097914f9c95c4f9a8224d02db5d79b7166c74115e2eea7b23ccc13510"
"digest": "0d46a2c5bc374e305682dc4f1c322518c07638153a8365034a513ea46960802b"
},
"arguments": {
"inputs": {
......@@ -42,7 +42,7 @@
"version": "0.5.0",
"python_path": "d3m.primitives.data_transformation.column_parser.DataFrameCommon",
"name": "Parses strings into their types",
"digest": "d41ad0c56ef55a233b21f4a4d8df1ac782aca7a78ef98dbfb72215690b3e9850"
"digest": "312cacc014497dd674e34765f6eb54430e594c591e760da0383c87844753d2ce"
},
"arguments": {
"inputs": {
......@@ -60,10 +60,10 @@
"type": "PRIMITIVE",
"primitive": {
"id": "4503a4c6-42f7-45a1-a1d4-ed69699cf5e1",
"version": "0.3.0",
"version": "0.2.0",
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon",
"name": "Extracts columns by semantic type",
"digest": "e91e0f7569ad53b6d4b8c01641f80fb0aa764b5dd3ae71dd2fbb433fa62c7f81"
"digest": "297a4943484bcd532650d5727e23b3d11ca702688d7b64dfb5df8bf1282eaa47"
},
"arguments": {
"inputs": {
......@@ -92,7 +92,7 @@
"version": "0.1.0",
"python_path": "d3m.primitives.data_transformation.dataframe_to_ndarray.Common",
"name": "DataFrame to ndarray converter",
"digest": "acd6cfebb0d83da23e3b93034471ca6f04fc2478d2105e13518d6c76c850b676"
"digest": "71862085ea87f4f68abc9f49b4fa661b1ee70a4f3a97f1c1bb4343e2d27dbd37"
},
"arguments": {
"inputs": {
......@@ -113,7 +113,7 @@
"version": "0.0.5",
"python_path": "d3m.primitives.clustering.kss.Umich",
"name": "KSS",
"digest": "a7dc27c6d7ab54183442b8e3d520777c9fc6ce8ad54c0fb9cb327a3d4361f67d"
"digest": "a9670f27e52775027c3df96a7e0e07d7144e437d270629498554e397567916d9"
},
"arguments": {
"inputs": {
......@@ -144,7 +144,7 @@
"version": "0.1.0",
"python_path": "d3m.primitives.data_transformation.ndarray_to_dataframe.Common",
"name": "ndarray to Dataframe converter",
"digest": "7228a01faeab36d201bbe44a87c8b256d91dd03a458c0d589116c8db3f022bb4"
"digest": "801aa292c7b8ceb0a7dba20618aa7949b289551d8cd314e5de14190084200fc9"
},
"arguments": {
"inputs": {
......@@ -165,7 +165,7 @@
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.construct_predictions.DataFrameCommon",
"name": "Construct pipeline predictions output",
"digest": "53087aaa6baf0ccc96b6525ca5b79fd4e51b4cce996ab39773a9b0b3e746bf05"
"digest": "cfb2d595652c4ae0d24e67d4cb8e4916c9f3c2753eaccc2935263d054b3682fa"
},
"arguments": {
"inputs": {
......@@ -184,5 +184,5 @@
]
}
],
"digest": "a53ec1ca05d5089d8faaa42d962d18629c54225fafbffce1bf167c639a8caa6d"
"digest": "5d6e9214dce222766b219cd7e017b8a6a8247f29a6de79d505b970187db4278a"
}
\ No newline at end of file
......@@ -20,7 +20,7 @@
"installation": [
{
"type": "PIP",
"package_uri": "git+https://github.com/dvdmjohnson/d3m_michigan_primitives.git@98e685e0d16f754caedd1e50afbc1e0d0aa28842#egg=spider"
"package_uri": "git+https://github.com/dvdmjohnson/d3m_michigan_primitives.git@8135efdd2b88e99cd85dd5be6c82bcd64f351e8e#egg=spider"
},
{
"type": "UBUNTU",
......@@ -241,5 +241,5 @@
}
},
"structural_type": "spider.cluster.kss.kss.KSS",
"digest": "a7dc27c6d7ab54183442b8e3d520777c9fc6ce8ad54c0fb9cb327a3d4361f67d"
"digest": "a9670f27e52775027c3df96a7e0e07d7144e437d270629498554e397567916d9"
}
{
"id": "ba6ec74c-1ae5-4059-be4f-ced4f01c8c1a",
"id": "a3fd5612-cf2d-4974-8c18-8161712e1456",
"schema": "https://metadata.datadrivendiscovery.org/schemas/v0/pipeline.json",
"created": "2019-06-19T03:18:43.166778Z",
"created": "2019-06-20T15:32:27.009068Z",
"inputs": [
{
"name": "inputs"
......@@ -21,7 +21,7 @@
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.dataset_to_dataframe.Common",
"name": "Extract a DataFrame from a Dataset",
"digest": "45f8322097914f9c95c4f9a8224d02db5d79b7166c74115e2eea7b23ccc13510"
"digest": "0d46a2c5bc374e305682dc4f1c322518c07638153a8365034a513ea46960802b"
},
"arguments": {
"inputs": {
......@@ -42,7 +42,7 @@
"version": "0.5.0",
"python_path": "d3m.primitives.data_transformation.column_parser.DataFrameCommon",
"name": "Parses strings into their types",
"digest": "d41ad0c56ef55a233b21f4a4d8df1ac782aca7a78ef98dbfb72215690b3e9850"
"digest": "312cacc014497dd674e34765f6eb54430e594c591e760da0383c87844753d2ce"
},
"arguments": {
"inputs": {
......@@ -60,10 +60,10 @@
"type": "PRIMITIVE",
"primitive": {
"id": "4503a4c6-42f7-45a1-a1d4-ed69699cf5e1",
"version": "0.3.0",
"version": "0.2.0",
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon",
"name": "Extracts columns by semantic type",
"digest": "e91e0f7569ad53b6d4b8c01641f80fb0aa764b5dd3ae71dd2fbb433fa62c7f81"
"digest": "297a4943484bcd532650d5727e23b3d11ca702688d7b64dfb5df8bf1282eaa47"
},
"arguments": {
"inputs": {
......@@ -92,7 +92,7 @@
"version": "0.1.0",
"python_path": "d3m.primitives.data_transformation.dataframe_to_ndarray.Common",
"name": "DataFrame to ndarray converter",
"digest": "acd6cfebb0d83da23e3b93034471ca6f04fc2478d2105e13518d6c76c850b676"
"digest": "71862085ea87f4f68abc9f49b4fa661b1ee70a4f3a97f1c1bb4343e2d27dbd37"
},
"arguments": {
"inputs": {
......@@ -113,7 +113,7 @@
"version": "0.0.5",
"python_path": "d3m.primitives.clustering.ssc_admm.Umich",
"name": "SSC_ADMM",
"digest": "26d325ba630b7f343d9dc8bbc59d0c1700a64b45e10b85603560c126a01964f5"
"digest": "0a527aedaa8308cda69e956424c07c56de53f40e9a1208bbd53fc5a57edd305a"
},
"arguments": {
"inputs": {
......@@ -129,7 +129,7 @@
"hyperparams": {
"n_clusters": {
"type": "VALUE",
"data": 100
"data": 1500
}
}
},
......@@ -140,7 +140,7 @@
"version": "0.1.0",
"python_path": "d3m.primitives.data_transformation.ndarray_to_dataframe.Common",
"name": "ndarray to Dataframe converter",
"digest": "7228a01faeab36d201bbe44a87c8b256d91dd03a458c0d589116c8db3f022bb4"
"digest": "801aa292c7b8ceb0a7dba20618aa7949b289551d8cd314e5de14190084200fc9"
},
"arguments": {
"inputs": {
......@@ -161,7 +161,7 @@
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.construct_predictions.DataFrameCommon",
"name": "Construct pipeline predictions output",
"digest": "53087aaa6baf0ccc96b6525ca5b79fd4e51b4cce996ab39773a9b0b3e746bf05"
"digest": "cfb2d595652c4ae0d24e67d4cb8e4916c9f3c2753eaccc2935263d054b3682fa"
},
"arguments": {
"inputs": {
......@@ -180,5 +180,5 @@
]
}
],
"digest": "29d158947336b07821f53537d6697c5c0e518ca1d0b621c770c08e92efedd875"
"digest": "fae3a4443db3dd445de4ec24cc73accfce0a7472d1ee5cd1c26b95f58fab9c00"
}
\ No newline at end of file
......@@ -21,7 +21,7 @@
"installation": [
{
"type": "PIP",
"package_uri": "git+https://github.com/dvdmjohnson/d3m_michigan_primitives.git@98e685e0d16f754caedd1e50afbc1e0d0aa28842#egg=spider"
"package_uri": "git+https://github.com/dvdmjohnson/d3m_michigan_primitives.git@8135efdd2b88e99cd85dd5be6c82bcd64f351e8e#egg=spider"
},
{
"type": "UBUNTU",
......@@ -282,5 +282,5 @@
}
},
"structural_type": "spider.cluster.ssc_admm.ssc_admm.SSC_ADMM",
"digest": "26d325ba630b7f343d9dc8bbc59d0c1700a64b45e10b85603560c126a01964f5"
"digest": "0a527aedaa8308cda69e956424c07c56de53f40e9a1208bbd53fc5a57edd305a"
}
{
"id": "ff6cc5a2-a352-4728-8532-99281fc2c2e3",
"id": "2bf8a85a-66eb-42ba-9acd-4fcbce1f0e82",
"schema": "https://metadata.datadrivendiscovery.org/schemas/v0/pipeline.json",
"created": "2019-06-19T03:18:45.539386Z",
"created": "2019-06-20T15:32:29.453640Z",
"inputs": [
{
"name": "inputs"
......@@ -21,7 +21,7 @@
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.dataset_to_dataframe.Common",
"name": "Extract a DataFrame from a Dataset",
"digest": "45f8322097914f9c95c4f9a8224d02db5d79b7166c74115e2eea7b23ccc13510"
"digest": "0d46a2c5bc374e305682dc4f1c322518c07638153a8365034a513ea46960802b"
},
"arguments": {
"inputs": {
......@@ -42,7 +42,7 @@
"version": "0.5.0",
"python_path": "d3m.primitives.data_transformation.column_parser.DataFrameCommon",
"name": "Parses strings into their types",
"digest": "d41ad0c56ef55a233b21f4a4d8df1ac782aca7a78ef98dbfb72215690b3e9850"
"digest": "312cacc014497dd674e34765f6eb54430e594c591e760da0383c87844753d2ce"
},
"arguments": {
"inputs": {
......@@ -60,10 +60,10 @@
"type": "PRIMITIVE",
"primitive": {
"id": "4503a4c6-42f7-45a1-a1d4-ed69699cf5e1",
"version": "0.3.0",
"version": "0.2.0",
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon",
"name": "Extracts columns by semantic type",
"digest": "e91e0f7569ad53b6d4b8c01641f80fb0aa764b5dd3ae71dd2fbb433fa62c7f81"
"digest": "297a4943484bcd532650d5727e23b3d11ca702688d7b64dfb5df8bf1282eaa47"
},
"arguments": {
"inputs": {
......@@ -92,7 +92,7 @@
"version": "0.1.0",
"python_path": "d3m.primitives.data_transformation.dataframe_to_ndarray.Common",
"name": "DataFrame to ndarray converter",
"digest": "acd6cfebb0d83da23e3b93034471ca6f04fc2478d2105e13518d6c76c850b676"
"digest": "71862085ea87f4f68abc9f49b4fa661b1ee70a4f3a97f1c1bb4343e2d27dbd37"
},
"arguments": {
"inputs": {
......@@ -113,7 +113,7 @@
"version": "0.0.5",
"python_path": "d3m.primitives.clustering.ssc_cvx.Umich",
"name": "SSC_CVX",
"digest": "12699548d1360c027e9797c57f6dd778c70574746b604cf4f638fb44ac4466b8"
"digest": "ba30949d22325888b3b9fbab460409669d01885b54a3513b76b3bb06816fe4d6"
},
"arguments": {
"inputs": {
......@@ -140,7 +140,7 @@
"version": "0.1.0",
"python_path": "d3m.primitives.data_transformation.ndarray_to_dataframe.Common",
"name": "ndarray to Dataframe converter",
"digest": "7228a01faeab36d201bbe44a87c8b256d91dd03a458c0d589116c8db3f022bb4"
"digest": "801aa292c7b8ceb0a7dba20618aa7949b289551d8cd314e5de14190084200fc9"
},
"arguments": {
"inputs": {
......@@ -161,7 +161,7 @@
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.construct_predictions.DataFrameCommon",
"name": "Construct pipeline predictions output",
"digest": "53087aaa6baf0ccc96b6525ca5b79fd4e51b4cce996ab39773a9b0b3e746bf05"
"digest": "cfb2d595652c4ae0d24e67d4cb8e4916c9f3c2753eaccc2935263d054b3682fa"
},
"arguments": {
"inputs": {
......@@ -180,5 +180,5 @@
]
}
],
"digest": "dbf945b4e30e594b896ba8f01de58ac7e874632ab58bf47abed471561d46ec8c"
"digest": "db377d278d1a44d5969d8d1ca4bdae71b5547c5e9e52edb023a9b6edcd61940c"
}
\ No newline at end of file
......@@ -21,7 +21,7 @@
"installation": [
{
"type": "PIP",
"package_uri": "git+https://github.com/dvdmjohnson/d3m_michigan_primitives.git@98e685e0d16f754caedd1e50afbc1e0d0aa28842#egg=spider"
"package_uri": "git+https://github.com/dvdmjohnson/d3m_michigan_primitives.git@8135efdd2b88e99cd85dd5be6c82bcd64f351e8e#egg=spider"
},
{
"type": "UBUNTU",
......@@ -295,5 +295,5 @@
}
},
"structural_type": "spider.cluster.ssc_cvx.ssc_cvx.SSC_CVX",
"digest": "12699548d1360c027e9797c57f6dd778c70574746b604cf4f638fb44ac4466b8"
"digest": "ba30949d22325888b3b9fbab460409669d01885b54a3513b76b3bb06816fe4d6"
}
{
"id": "c222168d-7d0d-4d33-b8d1-279828555272",
"id": "bfc898bd-bf7b-4fb6-bf06-9ee03d1a155b",
"schema": "https://metadata.datadrivendiscovery.org/schemas/v0/pipeline.json",
"created": "2019-06-19T03:18:47.713539Z",
"created": "2019-06-20T15:32:31.777287Z",
"inputs": [
{
"name": "inputs"
......@@ -21,7 +21,7 @@
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.dataset_to_dataframe.Common",
"name": "Extract a DataFrame from a Dataset",
"digest": "45f8322097914f9c95c4f9a8224d02db5d79b7166c74115e2eea7b23ccc13510"
"digest": "0d46a2c5bc374e305682dc4f1c322518c07638153a8365034a513ea46960802b"
},
"arguments": {
"inputs": {
......@@ -42,7 +42,7 @@
"version": "0.5.0",
"python_path": "d3m.primitives.data_transformation.column_parser.DataFrameCommon",
"name": "Parses strings into their types",
"digest": "d41ad0c56ef55a233b21f4a4d8df1ac782aca7a78ef98dbfb72215690b3e9850"
"digest": "312cacc014497dd674e34765f6eb54430e594c591e760da0383c87844753d2ce"
},
"arguments": {
"inputs": {
......@@ -60,10 +60,10 @@
"type": "PRIMITIVE",
"primitive": {
"id": "4503a4c6-42f7-45a1-a1d4-ed69699cf5e1",
"version": "0.3.0",
"version": "0.2.0",
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon",
"name": "Extracts columns by semantic type",
"digest": "e91e0f7569ad53b6d4b8c01641f80fb0aa764b5dd3ae71dd2fbb433fa62c7f81"
"digest": "297a4943484bcd532650d5727e23b3d11ca702688d7b64dfb5df8bf1282eaa47"
},
"arguments": {
"inputs": {
......@@ -92,7 +92,7 @@
"version": "0.1.0",
"python_path": "d3m.primitives.data_transformation.dataframe_to_ndarray.Common",
"name": "DataFrame to ndarray converter",
"digest": "acd6cfebb0d83da23e3b93034471ca6f04fc2478d2105e13518d6c76c850b676"
"digest": "71862085ea87f4f68abc9f49b4fa661b1ee70a4f3a97f1c1bb4343e2d27dbd37"
},
"arguments": {
"inputs": {
......@@ -113,7 +113,7 @@
"version": "0.0.5",
"python_path": "d3m.primitives.clustering.ssc_omp.Umich",
"name": "SSC_OMP",
"digest": "c470a6232f2f116c08d835244c4027bfbbef8c321482fe2ba27a7069ce753346"
"digest": "a6bb47a0b3a650db507b2d532a7e374dc353e35e1ebcd018e8113f1ebc74f494"
},
"arguments": {
"inputs": {
......@@ -129,7 +129,11 @@
"hyperparams": {
"n_clusters": {
"type": "VALUE",
"data": 100
"data": 1500
},
"sparsity_level": {
"type": "VALUE",
"data": 5
}
}
},
......@@ -140,7 +144,7 @@
"version": "0.1.0",
"python_path": "d3m.primitives.data_transformation.ndarray_to_dataframe.Common",
"name": "ndarray to Dataframe converter",
"digest": "7228a01faeab36d201bbe44a87c8b256d91dd03a458c0d589116c8db3f022bb4"
"digest": "801aa292c7b8ceb0a7dba20618aa7949b289551d8cd314e5de14190084200fc9"
},
"arguments": {
"inputs": {
......@@ -161,7 +165,7 @@
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.construct_predictions.DataFrameCommon",
"name": "Construct pipeline predictions output",
"digest": "53087aaa6baf0ccc96b6525ca5b79fd4e51b4cce996ab39773a9b0b3e746bf05"
"digest": "cfb2d595652c4ae0d24e67d4cb8e4916c9f3c2753eaccc2935263d054b3682fa"
},
"arguments": {
"inputs": {
......@@ -180,5 +184,5 @@
]
}
],
"digest": "40d2235960bd99fd3d31eee0d6a27c60e8e87c85d431bd3cac39ad4c5dcd1fec"
"digest": "77ef68e9daee48e40dbabdaf24926ecfd8c34ff0036df9c5548ffc0dbd8fb5e6"
}
\ No newline at end of file
......@@ -21,7 +21,7 @@
"installation": [
{
"type": "PIP",
"package_uri": "git+https://github.com/dvdmjohnson/d3m_michigan_primitives.git@98e685e0d16f754caedd1e50afbc1e0d0aa28842#egg=spider"
"package_uri": "git+https://github.com/dvdmjohnson/d3m_michigan_primitives.git@8135efdd2b88e99cd85dd5be6c82bcd64f351e8e#egg=spider"
},
{
"type": "UBUNTU",
......@@ -252,5 +252,5 @@
}
},
"structural_type": "spider.cluster.ssc_omp.ssc_omp.SSC_OMP",
"digest": "c470a6232f2f116c08d835244c4027bfbbef8c321482fe2ba27a7069ce753346"
"digest": "a6bb47a0b3a650db507b2d532a7e374dc353e35e1ebcd018e8113f1ebc74f494"
}
{
"id": "97af6234-dc76-41ce-93ab-604e0dc2331a",
"schema": "https://metadata.datadrivendiscovery.org/schemas/v0/pipeline.json",
"created": "2019-06-20T15:32:07.779362Z",
"inputs": [
{
"name": "inputs"
}
],
"outputs": [
{
"data": "steps.9.produce",
"name": "output"
}
],
"steps": [
{
"type": "PRIMITIVE",
"primitive": {
"id": "f31f8c1f-d1c5-43e5-a4b2-2ae4a761ef2e",
"version": "0.2.0",
"python_path": "d3m.primitives.data_transformation.denormalize.Common",
"name": "Denormalize datasets",
"digest": "00ae7955cc0abce2a3ddee96247209f3395009ae6553c7ce8caa577e402754db"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "inputs.0"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "4b42ce1e-9b98-4a25-b68e-fad13311eb65",
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.dataset_to_dataframe.Common",
"name": "Extract a DataFrame from a Dataset",
"digest": "0d46a2c5bc374e305682dc4f1c322518c07638153a8365034a513ea46960802b"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.0.produce"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "8f2e51e8-da59-456d-ae29-53912b2b9f3d",
"version": "0.2.0",
"python_path": "d3m.primitives.data_preprocessing.image_reader.DataFrameCommon",
"name": "Columns image reader",
"digest": "a8ed92bc3d4625971eb1ef61aa0d6cfd9c2caea4fd3d0e92491bd225c1cfe484"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.1.produce"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "4503a4c6-42f7-45a1-a1d4-ed69699cf5e1",
"version": "0.2.0",
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon",
"name": "Extracts columns by semantic type",
"digest": "297a4943484bcd532650d5727e23b3d11ca702688d7b64dfb5df8bf1282eaa47"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.2.produce"
}
},
"outputs": [
{
"id": "produce"
}
],
"hyperparams": {
"semantic_types": {
"type": "VALUE",
"data": [
"http://schema.org/ImageObject"
]
}
}
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "4503a4c6-42f7-45a1-a1d4-ed69699cf5e1",
"version": "0.2.0",
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon",
"name": "Extracts columns by semantic type",
"digest": "297a4943484bcd532650d5727e23b3d11ca702688d7b64dfb5df8bf1282eaa47"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.2.produce"
}
},