Commit 58122d70 authored by Robert Brekelmans's avatar Robert Brekelmans Committed by Sujen

isi_updates

parent 90a335f4
......@@ -20,9 +20,8 @@
"id":"f31f8c1f-d1c5-43e5-a4b2-2ae4a761ef2e",
"version":"0.2.0",
"python_path":"d3m.primitives.data_transformation.denormalize.Common",
"name":"Denormalize datasets",
"digest":"406f9beb9ad211f4fde228be374f07a427d6b2b45aba4f1f4ac1b5510ae84e3e"
},
"name":"Denormalize datasets"
},
"arguments":{
"inputs":{
"type":"CONTAINER",
......@@ -59,8 +58,7 @@
"id":"dbb3792d-a44b-4941-a88e-5520c0a23488",
"version":"0.1.0",
"python_path":"d3m.primitives.data_transformation.normalize_graphs.Common",
"name":"Normalize graphs",
"digest":"19b36c34cf5b5bdbd9e9c9af319e409893b1dc6538da0e2b1b1ab660abcf7979"
"name":"Normalize graphs"
},
"arguments":{
"inputs":{
......@@ -80,8 +78,7 @@
"id":"dfb8c278-5382-47cd-bd39-f9429890a239",
"version":"1.0.0",
"python_path":"d3m.primitives.data_transformation.graph_to_edge_list.DSBOX",
"name":"Extract graph tables from Dataset into list of DataFrame",
"digest":"7d4ac2ca05dc06953b2df24b68a3d36ce2f9e8d7c5b7ec07862eb1e943a50c4a"
"name":"Extract graph tables from Dataset into list of DataFrame"
},
"arguments":{
"inputs":{
......@@ -101,8 +98,7 @@
"id":"4b42ce1e-9b98-4a25-b68e-fad13311eb65",
"version":"0.3.0",
"python_path":"d3m.primitives.data_transformation.dataset_to_dataframe.Common",
"name":"Extract a DataFrame from a Dataset",
"digest":"262d651c0711efd819511cb67355d9c247c7c44470c2281fa495e8701d5d3ecb"
"name":"Extract a DataFrame from a Dataset"
},
"arguments":{
"inputs":{
......@@ -122,8 +118,7 @@
"id":"4503a4c6-42f7-45a1-a1d4-ed69699cf5e1",
"version":"0.2.0",
"python_path":"d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon",
"name":"Extracts columns by semantic type",
"digest":"8d9e45e2eca7ac7a5510df443b041449cb558e751dd3876223b25f9f590246e3"
"name":"Extracts columns by semantic type"
},
"arguments":{
"inputs":{
......@@ -151,8 +146,7 @@
"id":"48572851-b86b-4fda-961d-f3f466adb58e",
"version":"1.0.0",
"python_path":"d3m.primitives.feature_construction.graph_transformer.GCN",
"name":"GCN",
"digest":"0fac4a956488c6285c6b5e1ee853bf78297e67693764f0492301f91bf04000ef"
"name":"GCN"
},
"arguments":{
"inputs":{
......@@ -176,8 +170,7 @@
"id":"1dd82833-5692-39cb-84fb-2455683075f3",
"version":"v2019.4.4",
"python_path":"d3m.primitives.classification.random_forest.SKlearn",
"name":"sklearn.ensemble.forest.RandomForestClassifier",
"digest":"7ea6cf52c696329ea9270dfc9d1cea219de388b5714ad850c6a055bd9b699ed9"
"name":"sklearn.ensemble.forest.RandomForestClassifier"
},
"arguments":{
"inputs":{
......@@ -244,7 +237,6 @@
],
"name":"ISI_gcn:140244824113296",
"description":"",
"digest":"e55fbfb13e9d0e851477fa7f83175178289e03d4178f71e4487d3daa72d76464",
"pipeline_rank":1.0,
"metric":"accuracy",
"metric_value":1.0,
......@@ -253,4 +245,4 @@
"template_subtask":"{'OVERLAPPING', 'NONE', 'NONOVERLAPPING'}",
"problem_taskType":"vertexNomination",
"problem_taskSubType":"NONE"
}
\ No newline at end of file
}
......@@ -13,7 +13,7 @@
"installation": [
{
"type": "PIP",
"package_uri": "git+https://github.com/brekelma/dsbox_graphs@524f058d83f925c49ac6257722d8f3cc0bcc2e2f#egg=dsbox_graphs"
"package_uri": "git+https://github.com/brekelma/dsbox_graphs@a2f5253e7f7c0f7bc096b34cd30d4f9b786456e6#egg=dsbox_graphs"
}
],
"algorithm_types": [
......@@ -201,5 +201,5 @@
},
"structural_type": "graph_dataset_to_list.GraphDatasetToList",
"description": "A primitive which extracts a DataFrame out of a Dataset.\n\nAttributes\n----------\nmetadata : PrimitiveMetadata\n Primitive's metadata. Available as a class attribute.\nlogger : Logger\n Primitive's logger. Available as a class attribute.\nhyperparams : Hyperparams\n Hyperparams passed to the constructor.\nrandom_seed : int\n Random seed passed to the constructor.\ndocker_containers : Dict[str, DockerContainer]\n A dict mapping Docker image keys from primitive's metadata to (named) tuples containing\n container's address under which the container is accessible by the primitive, and a\n dict mapping exposed ports to ports on that address.\nvolumes : Dict[str, str]\n A dict mapping volume keys from primitive's metadata to file and directory paths\n where downloaded and extracted files are available to the primitive.\ntemporary_directory : str\n An absolute path to a temporary directory a primitive can use to store any files\n for the duration of the current pipeline run phase. Directory is automatically\n cleaned up after the current pipeline run phase finishes.",
"digest": "3445676c930e4e309d0090048d605a994f460b3d760aba6706cac90cb39f9fda"
"digest": "82f436fc0758fa4b372d2824dda29002a35ff1df1751c4f132e9a47f8f8576f9"
}
{
"id":"5fa006d1-30a7-450c-a3ff-026ec917c60d",
"schema":"https://metadata.datadrivendiscovery.org/schemas/v0/pipeline.json",
"created":"2019-06-06T05:29:22.640712Z",
"inputs":[
{
"name":"input dataset"
}
],
"outputs":[
{
"data":"steps.8.produce",
"name":"predictions of input dataset"
}
],
"steps":[
{
"type":"PRIMITIVE",
"primitive":{
"id":"f31f8c1f-d1c5-43e5-a4b2-2ae4a761ef2e",
"version":"0.2.0",
"python_path":"d3m.primitives.data_transformation.denormalize.Common",
"name":"Denormalize datasets"
},
"arguments":{
"inputs":{
"type":"CONTAINER",
"data":"inputs.0"
}
},
"outputs":[
{
"id":"produce"
}
],
"hyperparams":{
"starting_resource":{
"type":"VALUE",
"data":null
},
"recursive":{
"type":"VALUE",
"data":true
},
"many_to_many":{
"type":"VALUE",
"data":false
},
"discard_not_joined_tabular_resources":{
"type":"VALUE",
"data":false
}
}
},
{
"type":"PRIMITIVE",
"primitive":{
"id":"4b42ce1e-9b98-4a25-b68e-fad13311eb65",
"version":"0.3.0",
"python_path":"d3m.primitives.data_transformation.dataset_to_dataframe.Common",
"name":"Extract a DataFrame from a Dataset"
},
"arguments":{
"inputs":{
"type":"CONTAINER",
"data":"steps.0.produce"
}
},
"outputs":[
{
"id":"produce"
}
]
},
{
"type":"PRIMITIVE",
"primitive":{
"id":"4503a4c6-42f7-45a1-a1d4-ed69699cf5e1",
"version":"0.2.0",
"python_path":"d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon",
"name":"Extracts columns by semantic type"
},
"arguments":{
"inputs":{
"type":"CONTAINER",
"data":"steps.1.produce"
}
},
"outputs":[
{
"id":"produce"
}
],
"hyperparams":{
"semantic_types":{
"type":"VALUE",
"data":[
"https://metadata.datadrivendiscovery.org/types/PrimaryKey",
"https://metadata.datadrivendiscovery.org/types/Attribute"
]
}
}
},
{
"type":"PRIMITIVE",
"primitive":{
"id":"4503a4c6-42f7-45a1-a1d4-ed69699cf5e1",
"version":"0.2.0",
"python_path":"d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon",
"name":"Extracts columns by semantic type"
},
"arguments":{
"inputs":{
"type":"CONTAINER",
"data":"steps.1.produce"
}
},
"outputs":[
{
"id":"produce"
}
],
"hyperparams":{
"semantic_types":{
"type":"VALUE",
"data":[
"https://metadata.datadrivendiscovery.org/types/TrueTarget"
]
}
}
},
{
"type":"PRIMITIVE",
"primitive":{
"id":"18f0bb42-6350-3753-8f2d-d1c3da70f279",
"version":"1.5.2",
"python_path":"d3m.primitives.data_preprocessing.encoder.DSBOX",
"name":"ISI DSBox Data Encoder"
},
"arguments":{
"inputs":{
"type":"CONTAINER",
"data":"steps.2.produce"
}
},
"outputs":[
{
"id":"produce"
}
]
},
{
"type":"PRIMITIVE",
"primitive":{
"id":"7ddf2fd8-2f7f-4e53-96a7-0d9f5aeecf93",
"version":"1.5.2",
"python_path":"d3m.primitives.data_transformation.to_numeric.DSBOX",
"name":"ISI DSBox To Numeric DataFrame"
},
"arguments":{
"inputs":{
"type":"CONTAINER",
"data":"steps.4.produce"
}
},
"outputs":[
{
"id":"produce"
}
]
},
{
"type":"PRIMITIVE",
"primitive":{
"id":"7894b699-61e9-3a50-ac9f-9bc510466667",
"version":"1.4.4",
"python_path":"d3m.primitives.data_preprocessing.MeanImputation.DSBOX",
"name":"DSBox Mean Imputer"
},
"arguments":{
"inputs":{
"type":"CONTAINER",
"data":"steps.5.produce"
}
},
"outputs":[
{
"id":"produce"
}
]
},
{
"type":"PRIMITIVE",
"primitive":{
"id":"d2d4fefc-0859-3522-91df-7e445f61a69b",
"version":"1.0.0",
"python_path":"d3m.primitives.feature_construction.corex_continuous.DSBOX",
"name":"CorexContinuous"
},
"arguments":{
"inputs":{
"type":"CONTAINER",
"data":"steps.6.produce"
}
},
"outputs":[
{
"id":"produce"
}
]
},
{
"type":"PRIMITIVE",
"primitive":{
"id":"18e63b10-c5b7-34bc-a670-f2c831d6b4bf",
"version":"1.0.0",
"python_path":"d3m.primitives.regression.corex_supervised.echo_linear",
"name":"EchoLinearRegression"
},
"arguments":{
"inputs":{
"type":"CONTAINER",
"data":"steps.7.produce"
},
"outputs":{
"type":"CONTAINER",
"data":"steps.3.produce"
}
},
"outputs":[
{
"id":"produce"
}
],
"hyperparams":{
"alpha":{
"type":"VALUE",
"data":1.0
}
}
}
],
"name":"TA1_regression_template_1:139972216851912",
"description":"",
"pipeline_rank":0.25455586124311574,
"metric":"meanSquaredError",
"metric_value":0.25455586124311574,
"template_name":"TA1_regression_template_1",
"template_task":"REGRESSION",
"template_subtask":"{'MULTIVARIATE', 'UNIVARIATE'}",
"problem_taskType":"regression",
"problem_taskSubType":"univariate"
}
{
"problem":"196_autoMpg_problem",
"full_inputs":[
"196_autoMpg_dataset"
],
"train_inputs":[
"196_autoMpg_dataset_TRAIN"
],
"test_inputs":[
"196_autoMpg_dataset_TEST"
],
"score_inputs":[
"196_autoMpg_dataset_SCORE"
]
}
\ No newline at end of file
......@@ -16,7 +16,7 @@
"installation": [
{
"type": "PIP",
"package_uri": "git+https://github.com/brekelma/dsbox_corex@f506dc67815f897d32541d6ceee75d802c52b950#egg=dsbox-corex"
"package_uri": "git+https://github.com/brekelma/dsbox_corex@414c0e77583575ffa9d869455d714d8650839b5d#egg=dsbox_corex"
}
],
"algorithm_types": [
......@@ -214,5 +214,5 @@
}
},
"structural_type": "corex_continuous.CorexContinuous",
"digest": "52d13d776494f2b97b5008eafd2ab451ab30ce246a251da9ab10ce62d3d1f6b3"
"digest": "c82bd23e6077c23dfbdc0f9ffd952d4510610d347bfe6c84f14142ae2f1fa42f"
}
......@@ -16,7 +16,7 @@
"installation": [
{
"type": "PIP",
"package_uri": "git+https://github.com/brekelma/dsbox_corex@f506dc67815f897d32541d6ceee75d802c52b950#egg=dsbox-corex"
"package_uri": "git+https://github.com/brekelma/dsbox_corex@414c0e77583575ffa9d869455d714d8650839b5d#egg=dsbox_corex"
}
],
"algorithm_types": [
......@@ -282,5 +282,5 @@
}
},
"structural_type": "echo_ib.EchoIB",
"digest": "e3ba88812c84b8321129f32418ea15af2fa91ef08584f8d2bc0fc11e2f2def44"
"digest": "025d638d9708d3d8ccb047c600ddaf4432bbb3183c77abf4d297dc057d82994b"
}
{
"problem":"30_personae_problem",
"full_inputs":[
"30_personae_dataset"
],
"train_inputs":[
"30_personae_dataset_TRAIN"
],
"test_inputs":[
"30_personae_dataset_TEST"
],
"score_inputs":[
"30_personae_dataset_SCORE"
]
}
{
"problem":"30_personae_problem",
"full_inputs":[
"30_personae_dataset"
],
"train_inputs":[
"30_personae_dataset_TRAIN"
],
"test_inputs":[
"30_personae_dataset_TEST"
],
"score_inputs":[
"30_personae_dataset_SCORE"
]
}
......@@ -16,7 +16,7 @@
"installation": [
{
"type": "PIP",
"package_uri": "git+https://github.com/brekelma/dsbox_corex@f506dc67815f897d32541d6ceee75d802c52b950#egg=dsbox-corex"
"package_uri": "git+https://github.com/brekelma/dsbox_corex@414c0e77583575ffa9d869455d714d8650839b5d#egg=dsbox_corex"
}
],
"algorithm_types": [
......@@ -261,5 +261,5 @@
}
},
"structural_type": "corex_text.CorexText",
"digest": "1cdab34b31f2a832483f70947afe4d71d9fe2bd562d497e80c9df133dad22880"
"digest": "102801b2291dc98866e12822f1aee45c19099e230601c1f0cbe9519ec4a48f83"
}
......@@ -20,8 +20,7 @@
"id":"f31f8c1f-d1c5-43e5-a4b2-2ae4a761ef2e",
"version":"0.2.0",
"python_path":"d3m.primitives.data_transformation.denormalize.Common",
"name":"Denormalize datasets",
"digest":"406f9beb9ad211f4fde228be374f07a427d6b2b45aba4f1f4ac1b5510ae84e3e"
"name":"Denormalize datasets"
},
"arguments":{
"inputs":{
......@@ -99,8 +98,7 @@
"id":"4b42ce1e-9b98-4a25-b68e-fad13311eb65",
"version":"0.3.0",
"python_path":"d3m.primitives.data_transformation.dataset_to_dataframe.Common",
"name":"Extract a DataFrame from a Dataset",
"digest":"262d651c0711efd819511cb67355d9c247c7c44470c2281fa495e8701d5d3ecb"
"name":"Extract a DataFrame from a Dataset"
},
"arguments":{
"inputs":{
......@@ -120,8 +118,7 @@
"id":"4503a4c6-42f7-45a1-a1d4-ed69699cf5e1",
"version":"0.2.0",
"python_path":"d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon",
"name":"Extracts columns by semantic type",
"digest":"8d9e45e2eca7ac7a5510df443b041449cb558e751dd3876223b25f9f590246e3"
"name":"Extracts columns by semantic type"
},
"arguments":{
"inputs":{
......@@ -138,8 +135,7 @@
"semantic_types":{
"type":"VALUE",
"data":[
"https://metadata.datadrivendiscovery.org/types/TrueTarget",
"https://metadata.datadrivendiscovery.org/types/SuggestedTarget"
"https://metadata.datadrivendiscovery.org/types/TrueTarget"
]
}
}
......@@ -150,8 +146,7 @@
"id":"48572851-b86b-4fda-961d-f3f466adb58e",
"version":"1.0.0",
"python_path":"d3m.primitives.feature_construction.graph_transformer.GCN",
"name":"GCN",
"digest":"0fac4a956488c6285c6b5e1ee853bf78297e67693764f0492301f91bf04000ef"
"name":"GCN"
},
"arguments":{
"inputs":{
......@@ -175,8 +170,7 @@
"id":"1dd82833-5692-39cb-84fb-2455683075f3",
"version":"2019.4.4",
"python_path":"d3m.primitives.classification.random_forest.SKlearn",
"name":"sklearn.ensemble.forest.RandomForestClassifier",
"digest":"7ea6cf52c696329ea9270dfc9d1cea219de388b5714ad850c6a055bd9b699ed9"
"name":"sklearn.ensemble.forest.RandomForestClassifier"
},
"arguments":{
"inputs":{
......
......@@ -16,7 +16,7 @@
"installation": [
{
"type": "PIP",
"package_uri": "git+https://github.com/brekelma/dsbox_graphs@524f058d83f925c49ac6257722d8f3cc0bcc2e2f#egg=dsbox_graphs"
"package_uri": "git+https://github.com/brekelma/dsbox_graphs@a2f5253e7f7c0f7bc096b34cd30d4f9b786456e6#egg=dsbox_graphs"
}
],
"algorithm_types": [
......@@ -99,6 +99,34 @@
"https://metadata.datadrivendiscovery.org/types/ControlParameter"
],
"description": "treat edges as nodes, construct adjacency matrix based on shared edges. relevant for edge based classification, e.g. link prediction"
},
"layers": {
"type": "d3m.metadata.hyperparams.UniformInt",
"default": 2,
"structural_type": "int",
"semantic_types": [
"http://schema.org/Integer",
"https://metadata.datadrivendiscovery.org/types/TuningParameter"
],
"description": "number of layers",
"lower": 1,
"upper": 10,
"lower_inclusive": true,
"upper_inclusive": false
},
"layer_size": {
"type": "d3m.metadata.hyperparams.UniformInt",
"default": 50,
"structural_type": "int",
"semantic_types": [
"http://schema.org/Integer",
"https://metadata.datadrivendiscovery.org/types/TuningParameter"
],
"description": "units per layer",
"lower": 10,
"upper": 200,
"lower_inclusive": true,
"upper_inclusive": false
}
},
"arguments": {
......@@ -241,15 +269,9 @@
},
"params": {
"fitted": "typing.Union[NoneType, bool]",
"model": "keras.engine.training.Model",
"pred_model": "keras.engine.training.Model",
"embed_model": "keras.engine.training.Model",
"weights": "typing.Union[NoneType, typing.Any]",
"pred_weights": "typing.Union[NoneType, typing.Any]",
"embed_weights": "typing.Union[NoneType, typing.Any]",
"adj": "typing.Union[NoneType, keras.engine.input_layer.Input, numpy.ndarray, scipy.sparse.csr.csr_matrix, tensorflow.python.framework.ops.Tensor, tensorflow.python.framework.sparse_tensor.SparseTensor, tensorflow.python.ops.variables.VariableV1]"
"network": "gcn_mix.GCN_Network"
}
},
"structural_type": "gcn_mix.GCN",
"digest": "3089e7661fe1de62fd6f40e360c3c253f0219348ec34e07d802875c6442b6ba2"
"digest": "50f416fdea8b9f924cc631108625daf61bc1127bc9d4cf0401b72b95e3c38c84"
}
{
"id":"d809cbec-617c-4b0e-851b-d9957824fc8b",
"schema":"https://metadata.datadrivendiscovery.org/schemas/v0/pipeline.json",
"created":"2019-06-05T03:44:33.899641Z",
"inputs":[
{
"name":"input dataset"
}
],
"outputs":[
{
"data":"steps.6.produce",
"name":"predictions of input dataset"
}
],
"steps":[
{
"type":"PRIMITIVE",
"primitive":{
"id":"f31f8c1f-d1c5-43e5-a4b2-2ae4a761ef2e",
"version":"0.2.0",
"python_path":"d3m.primitives.data_transformation.denormalize.Common",
"name":"Denormalize datasets"
},
"arguments":{
"inputs":{
"type":"CONTAINER",
"data":"inputs.0"
}
},
"outputs":[
{
"id":"produce"
}
],
"hyperparams":{
"starting_resource":{
"type":"VALUE",
"data":null
},
"recursive":{
"type":"VALUE",
"data":true
},
"many_to_many":{
"type":"VALUE",
"data":false
},
"discard_not_joined_tabular_resources":{
"type":"VALUE",
"data":false
}
}
},
{
"type":"PRIMITIVE",
"primitive":{
"id":"dbb3792d-a44b-4941-a88e-5520c0a23488",
"version":"0.1.0",
"python_path":"d3m.primitives.data_transformation.normalize_graphs.Common",
"name":"Normalize graphs"
},
"arguments":{
"inputs":{
"type":"CONTAINER",