Commit 3ca7cf54 authored by Ali Soltani Tehrani's avatar Ali Soltani Tehrani Committed by Sujen

Develop

parent 45b69681
{
"id": "d51c8e70-dbc9-46a7-bae7-897f1f901963",
"schema": "https://metadata.datadrivendiscovery.org/schemas/v0/pipeline.json",
"created": "2019-06-05T16:42:55.451409Z",
"inputs": [
{
"name": "inputs"
}
],
"outputs": [
{
"data": "steps.6.produce",
"name": "output"
}
],
"steps": [
{
"type": "PRIMITIVE",
"primitive": {
"id": "4b42ce1e-9b98-4a25-b68e-fad13311eb65",
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.dataset_to_dataframe.Common",
"name": "Extract a DataFrame from a Dataset",
"digest": "81bad326103ae32bd267da87163295ea80c0cd3d3f483b38bbaad13c59e04769"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "inputs.0"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "d510cb7a-1782-4f51-b44c-58f0236e47c7",
"version": "0.5.0",
"python_path": "d3m.primitives.data_transformation.column_parser.DataFrameCommon",
"name": "Parses strings into their types",
"digest": "5c8dd3521858e042fc63b59f59b7bfad28834eb57ea591ed6cb10adffbb433ca"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.0.produce"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "4503a4c6-42f7-45a1-a1d4-ed69699cf5e1",
"version": "0.2.0",
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon",
"name": "Extracts columns by semantic type",
"digest": "2c2d9097c8010dbf549cbbc0a698c0e3f22ea68fe293cbdd70ecb8898b3af2de"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.1.produce"
}
},
"outputs": [
{
"id": "produce"
}
],
"hyperparams": {
"semantic_types": {
"type": "VALUE",
"data": [
"https://metadata.datadrivendiscovery.org/types/Attribute"
]
}
}
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "34f71b2e-17bb-488d-a2ba-b60b8c305539",
"version": "0.1.0",
"python_path": "d3m.primitives.data_transformation.dataframe_to_ndarray.Common",
"name": "DataFrame to ndarray converter",
"digest": "8cc96fb5ab5775d28732491c618fcbbfc0228b6d888876fbd27d119ed98825cd"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.2.produce"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "6d94cfb0-4225-4446-b5b1-afd8803f2bf5",
"version": "0.0.5",
"python_path": "d3m.primitives.clustering.ekss.Umich",
"name": "EKSS",
"digest": "81f893010ea6117a2a2f70dd44d63bfaf038a7263760d09cc1029e67d55f9ae4"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.3.produce"
}
},
"outputs": [
{
"id": "produce"
}
],
"hyperparams": {
"n_clusters": {
"type": "VALUE",
"data": 100
}
}
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "f5241b2e-64f7-44ad-9675-df3d08066437",
"version": "0.1.0",
"python_path": "d3m.primitives.data_transformation.ndarray_to_dataframe.Common",
"name": "ndarray to Dataframe converter",
"digest": "f19bb2187d4bc4be5b9c45d221c7d2624ca0bcd9c4498e857723c039d2b2893b"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.4.produce"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "8d38b340-f83f-4877-baaa-162f8e551736",
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.construct_predictions.DataFrameCommon",
"name": "Construct pipeline predictions output",
"digest": "cb57ef54c67f35c34a71a85a4ce1ca1ea6eca12411c0b1b6d93fdf8a79dc9405"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.5.produce"
},
"reference": {
"type": "CONTAINER",
"data": "steps.0.produce"
}
},
"outputs": [
{
"id": "produce"
}
]
}
],
"digest": "f503b587c180c095c555b01b1460edfbd55698650d393a5f147c67806d9be90c"
}
\ No newline at end of file
{
"problem": "1491_one_hundred_plants_margin_clust_problem",
"full_inputs": [
"1491_one_hundred_plants_margin_clust_dataset"
],
"train_inputs": [
"1491_one_hundred_plants_margin_clust_dataset_TRAIN"
],
"test_inputs": [
"1491_one_hundred_plants_margin_clust_dataset_TEST"
],
"score_inputs": [
"1491_one_hundred_plants_margin_clust_dataset_SCORE"
]
}
\ No newline at end of file
......@@ -21,7 +21,7 @@
"installation": [
{
"type": "PIP",
"package_uri": "git+https://github.com/dvdmjohnson/d3m_michigan_primitives.git@a5e0272b22ff5113e880860b58aa975afca3d0fc#egg=spider"
"package_uri": "git+https://github.com/dvdmjohnson/d3m_michigan_primitives.git@bb166e113313c1bf821aca50a7a843598912c058#egg=spider"
},
{
"type": "UBUNTU",
......@@ -234,7 +234,6 @@
"kind": "PRODUCE",
"arguments": [
"inputs",
"timeout",
"iterations"
],
"returns": "d3m.primitive_interfaces.base.CallResult[d3m.container.numpy.ndarray]",
......@@ -246,7 +245,6 @@
"kind": "PRODUCE",
"arguments": [
"inputs",
"timeout",
"iterations"
],
"returns": "d3m.primitive_interfaces.base.CallResult[d3m.container.numpy.ndarray]",
......@@ -284,5 +282,5 @@
}
},
"structural_type": "spider.cluster.ekss.ekss.EKSS",
"digest": "fa533642570e549f60001812779fab82e4e574692337cda8d22d3aec4f3e45d1"
"digest": "81f893010ea6117a2a2f70dd44d63bfaf038a7263760d09cc1029e67d55f9ae4"
}
{
"id": "bf27992a-d760-4d46-aa13-36a00f940dcc",
"schema": "https://metadata.datadrivendiscovery.org/schemas/v0/pipeline.json",
"created": "2019-06-05T16:42:52.733125Z",
"inputs": [
{
"name": "inputs"
}
],
"outputs": [
{
"data": "steps.6.produce",
"name": "output"
}
],
"steps": [
{
"type": "PRIMITIVE",
"primitive": {
"id": "4b42ce1e-9b98-4a25-b68e-fad13311eb65",
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.dataset_to_dataframe.Common",
"name": "Extract a DataFrame from a Dataset",
"digest": "81bad326103ae32bd267da87163295ea80c0cd3d3f483b38bbaad13c59e04769"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "inputs.0"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "d510cb7a-1782-4f51-b44c-58f0236e47c7",
"version": "0.5.0",
"python_path": "d3m.primitives.data_transformation.column_parser.DataFrameCommon",
"name": "Parses strings into their types",
"digest": "5c8dd3521858e042fc63b59f59b7bfad28834eb57ea591ed6cb10adffbb433ca"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.0.produce"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "4503a4c6-42f7-45a1-a1d4-ed69699cf5e1",
"version": "0.2.0",
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon",
"name": "Extracts columns by semantic type",
"digest": "2c2d9097c8010dbf549cbbc0a698c0e3f22ea68fe293cbdd70ecb8898b3af2de"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.1.produce"
}
},
"outputs": [
{
"id": "produce"
}
],
"hyperparams": {
"semantic_types": {
"type": "VALUE",
"data": [
"https://metadata.datadrivendiscovery.org/types/Attribute"
]
}
}
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "34f71b2e-17bb-488d-a2ba-b60b8c305539",
"version": "0.1.0",
"python_path": "d3m.primitives.data_transformation.dataframe_to_ndarray.Common",
"name": "DataFrame to ndarray converter",
"digest": "8cc96fb5ab5775d28732491c618fcbbfc0228b6d888876fbd27d119ed98825cd"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.2.produce"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "044e5c71-7507-4f58-a139-bc5481179d62",
"version": "0.0.5",
"python_path": "d3m.primitives.clustering.kss.Umich",
"name": "KSS",
"digest": "e4557e95ef81caa21f9b51a39550b631174b37694216a797d1b4c5ce8e09514d"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.3.produce"
}
},
"outputs": [
{
"id": "produce"
}
],
"hyperparams": {
"n_clusters": {
"type": "VALUE",
"data": 100
}
}
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "f5241b2e-64f7-44ad-9675-df3d08066437",
"version": "0.1.0",
"python_path": "d3m.primitives.data_transformation.ndarray_to_dataframe.Common",
"name": "ndarray to Dataframe converter",
"digest": "f19bb2187d4bc4be5b9c45d221c7d2624ca0bcd9c4498e857723c039d2b2893b"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.4.produce"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "8d38b340-f83f-4877-baaa-162f8e551736",
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.construct_predictions.DataFrameCommon",
"name": "Construct pipeline predictions output",
"digest": "cb57ef54c67f35c34a71a85a4ce1ca1ea6eca12411c0b1b6d93fdf8a79dc9405"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.5.produce"
},
"reference": {
"type": "CONTAINER",
"data": "steps.0.produce"
}
},
"outputs": [
{
"id": "produce"
}
]
}
],
"digest": "a21de06ee2a4a68f6a4901ef40e34459970f62363ebb720aca5f392d9d1c62bd"
}
\ No newline at end of file
{
"problem": "1491_one_hundred_plants_margin_clust_problem",
"full_inputs": [
"1491_one_hundred_plants_margin_clust_dataset"
],
"train_inputs": [
"1491_one_hundred_plants_margin_clust_dataset_TRAIN"
],
"test_inputs": [
"1491_one_hundred_plants_margin_clust_dataset_TEST"
],
"score_inputs": [
"1491_one_hundred_plants_margin_clust_dataset_SCORE"
]
}
\ No newline at end of file
......@@ -20,7 +20,7 @@
"installation": [
{
"type": "PIP",
"package_uri": "git+https://github.com/dvdmjohnson/d3m_michigan_primitives.git@a5e0272b22ff5113e880860b58aa975afca3d0fc#egg=spider"
"package_uri": "git+https://github.com/dvdmjohnson/d3m_michigan_primitives.git@bb166e113313c1bf821aca50a7a843598912c058#egg=spider"
},
{
"type": "UBUNTU",
......@@ -97,11 +97,6 @@
"kind": "RUNTIME",
"default": null
},
"timeout": {
"type": "typing.Union[NoneType, float]",
"kind": "RUNTIME",
"default": null
},
"iterations": {
"type": "typing.Union[NoneType, int]",
"kind": "RUNTIME",
......@@ -115,6 +110,11 @@
"type": "d3m.container.numpy.ndarray",
"kind": "PIPELINE"
},
"timeout": {
"type": "typing.Union[NoneType, float]",
"kind": "RUNTIME",
"default": null
},
"params": {
"type": "spider.cluster.kss.kss.KSSParams",
"kind": "RUNTIME"
......@@ -150,7 +150,6 @@
"fit": {
"kind": "OTHER",
"arguments": [
"timeout",
"iterations"
],
"returns": "d3m.primitive_interfaces.base.CallResult[NoneType]",
......@@ -187,9 +186,7 @@
"produce": {
"kind": "PRODUCE",
"arguments": [
"inputs",
"timeout",
"iterations"
"inputs"
],
"returns": "d3m.primitive_interfaces.base.CallResult[d3m.container.numpy.ndarray]",
"singleton": false,
......@@ -199,9 +196,7 @@
"produce_distance_matrix": {
"kind": "PRODUCE",
"arguments": [
"inputs",
"timeout",
"iterations"
"inputs"
],
"returns": "d3m.primitive_interfaces.base.CallResult[d3m.container.numpy.ndarray]",
"singleton": false,
......@@ -241,5 +236,5 @@
}
},
"structural_type": "spider.cluster.kss.kss.KSS",
"digest": "f3a36185392fc639b4ab964a5edffac8f7e8b865ced25b29fc32f5752fb25593"
"digest": "e4557e95ef81caa21f9b51a39550b631174b37694216a797d1b4c5ce8e09514d"
}
{
"id": "48cd2798-4bc2-453f-8682-eb15a8fc1add",
"schema": "https://metadata.datadrivendiscovery.org/schemas/v0/pipeline.json",
"created": "2019-06-05T16:42:58.246243Z",
"inputs": [
{
"name": "inputs"
}
],
"outputs": [
{
"data": "steps.6.produce",
"name": "output"
}
],
"steps": [
{
"type": "PRIMITIVE",
"primitive": {
"id": "4b42ce1e-9b98-4a25-b68e-fad13311eb65",
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.dataset_to_dataframe.Common",
"name": "Extract a DataFrame from a Dataset",
"digest": "81bad326103ae32bd267da87163295ea80c0cd3d3f483b38bbaad13c59e04769"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "inputs.0"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "d510cb7a-1782-4f51-b44c-58f0236e47c7",
"version": "0.5.0",
"python_path": "d3m.primitives.data_transformation.column_parser.DataFrameCommon",
"name": "Parses strings into their types",
"digest": "5c8dd3521858e042fc63b59f59b7bfad28834eb57ea591ed6cb10adffbb433ca"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.0.produce"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "4503a4c6-42f7-45a1-a1d4-ed69699cf5e1",
"version": "0.2.0",
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon",
"name": "Extracts columns by semantic type",
"digest": "2c2d9097c8010dbf549cbbc0a698c0e3f22ea68fe293cbdd70ecb8898b3af2de"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.1.produce"
}
},
"outputs": [
{
"id": "produce"
}
],
"hyperparams": {
"semantic_types": {
"type": "VALUE",
"data": [
"https://metadata.datadrivendiscovery.org/types/Attribute"
]
}
}
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "34f71b2e-17bb-488d-a2ba-b60b8c305539",
"version": "0.1.0",
"python_path": "d3m.primitives.data_transformation.dataframe_to_ndarray.Common",
"name": "DataFrame to ndarray converter",
"digest": "8cc96fb5ab5775d28732491c618fcbbfc0228b6d888876fbd27d119ed98825cd"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.2.produce"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "83083e82-088b-47f4-9c0b-ba29adf5a51d",
"version": "0.0.5",
"python_path": "d3m.primitives.clustering.ssc_admm.Umich",
"name": "SSC_ADMM",
"digest": "bd45835036830bfa409acdd3fdc7e231541661254f1e578f0780535da14ee3c2"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.3.produce"
}
},
"outputs": [
{
"id": "produce"
}
],
"hyperparams": {
"n_clusters": {
"type": "VALUE",
"data": 100
}
}
},
{