Commit 272ebbf9 authored by Alex Gittens's avatar Alex Gittens

updating ICSI primitives and pipelines

parent 39bf05fb
{
"id": "bc3382b9-1888-4c9d-aff2-4a72835c4afd",
"schema": "https://metadata.datadrivendiscovery.org/schemas/v0/pipeline.json",
"created": "2019-06-17T02:03:14.502079Z",
"inputs": [
{
"name": "inputs"
}
],
"outputs": [
{
"data": "steps.9.produce",
"name": "output"
}
],
"steps": [
{
"type": "PRIMITIVE",
"primitive": {
"id": "4b42ce1e-9b98-4a25-b68e-fad13311eb65",
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.dataset_to_dataframe.Common",
"name": "Extract a DataFrame from a Dataset",
"digest": "0d46a2c5bc374e305682dc4f1c322518c07638153a8365034a513ea46960802b"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "inputs.0"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "d510cb7a-1782-4f51-b44c-58f0236e47c7",
"version": "0.5.0",
"python_path": "d3m.primitives.data_transformation.column_parser.DataFrameCommon",
"name": "Parses strings into their types",
"digest": "312cacc014497dd674e34765f6eb54430e594c591e760da0383c87844753d2ce"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.0.produce"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "4503a4c6-42f7-45a1-a1d4-ed69699cf5e1",
"version": "0.2.0",
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon",
"name": "Extracts columns by semantic type",
"digest": "297a4943484bcd532650d5727e23b3d11ca702688d7b64dfb5df8bf1282eaa47"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.1.produce"
}
},
"outputs": [
{
"id": "produce"
}
],
"hyperparams": {
"semantic_types": {
"type": "VALUE",
"data": [
"https://metadata.datadrivendiscovery.org/types/Attribute"
]
}
}
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "d016df89-de62-3c53-87ed-c06bb6a23cde",
"version": "2019.4.4",
"python_path": "d3m.primitives.data_cleaning.imputer.SKlearn",
"name": "sklearn.impute.SimpleImputer",
"digest": "9878fdeb255c5b4fb2beaf053e68b2913e3d7b1c26e40c530c1cb4fe562fde26"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.2.produce"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "34f71b2e-17bb-488d-a2ba-b60b8c305539",
"version": "0.1.0",
"python_path": "d3m.primitives.data_transformation.dataframe_to_ndarray.Common",
"name": "DataFrame to ndarray converter",
"digest": "71862085ea87f4f68abc9f49b4fa661b1ee70a4f3a97f1c1bb4343e2d27dbd37"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.3.produce"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "4503a4c6-42f7-45a1-a1d4-ed69699cf5e1",
"version": "0.2.0",
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon",
"name": "Extracts columns by semantic type",
"digest": "297a4943484bcd532650d5727e23b3d11ca702688d7b64dfb5df8bf1282eaa47"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.1.produce"
}
},
"outputs": [
{
"id": "produce"
}
],
"hyperparams": {
"semantic_types": {
"type": "VALUE",
"data": [
"https://metadata.datadrivendiscovery.org/types/TrueTarget"
]
}
}
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "34f71b2e-17bb-488d-a2ba-b60b8c305539",
"version": "0.1.0",
"python_path": "d3m.primitives.data_transformation.dataframe_to_ndarray.Common",
"name": "DataFrame to ndarray converter",
"digest": "71862085ea87f4f68abc9f49b4fa661b1ee70a4f3a97f1c1bb4343e2d27dbd37"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.5.produce"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "f8de43e0-7f81-4edd-9ef6-51bcd2953784",
"version": "2.7.6",
"python_path": "d3m.primitives.classification.tensor_machines_binary_classification.TensorMachinesBinaryClassification",
"name": "Tensor Machine Binary Classifier",
"digest": "d35fe4d1ce9929af12322c9d0de6c284bc9a31b0cd7b4666bf804ceb7bc4f03e"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.4.produce"
},
"outputs": {
"type": "CONTAINER",
"data": "steps.6.produce"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "f5241b2e-64f7-44ad-9675-df3d08066437",
"version": "0.1.0",
"python_path": "d3m.primitives.data_transformation.ndarray_to_dataframe.Common",
"name": "ndarray to Dataframe converter",
"digest": "801aa292c7b8ceb0a7dba20618aa7949b289551d8cd314e5de14190084200fc9"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.7.produce"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "8d38b340-f83f-4877-baaa-162f8e551736",
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.construct_predictions.DataFrameCommon",
"name": "Construct pipeline predictions output",
"digest": "cfb2d595652c4ae0d24e67d4cb8e4916c9f3c2753eaccc2935263d054b3682fa"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.8.produce"
},
"reference": {
"type": "CONTAINER",
"data": "steps.0.produce"
}
},
"outputs": [
{
"id": "produce"
}
]
}
],
"digest": "487760140f23949a1539a9e93a046194b7f3c1d1a58e543d8476569b906665bf"
}
\ No newline at end of file
{
"problem": "uu4_SPECT_problem",
"full_inputs": [
"uu4_SPECT_dataset"
],
"train_inputs": [
"uu4_SPECT_dataset_TRAIN"
],
"test_inputs": [
"uu4_SPECT_dataset_TEST"
],
"score_inputs": [
"uu4_SPECT_dataset_SCORE"
]
}
\ No newline at end of file
{
"id": "daeec188-ad21-4ecf-a397-38572119fde0",
"id": "2702caae-21e7-49dc-a6bc-a4b52127ef93",
"schema": "https://metadata.datadrivendiscovery.org/schemas/v0/pipeline.json",
"created": "2019-06-15T08:05:47.012930Z",
"created": "2019-06-17T02:03:19.148303Z",
"inputs": [
{
"name": "inputs"
......@@ -139,10 +139,10 @@
"type": "PRIMITIVE",
"primitive": {
"id": "ea3b78a6-dc8c-4772-a329-b653583817b4",
"version": "2.7.4",
"python_path": "d3m.primitives.feature_extraction.sparse_pca.SparsePCA",
"name": "Sparse Principal Component Analysis",
"digest": "34fd36d7e353d0039ffa34864112d1003978e089b1aacbb5446b0df0b79aa2bb"
"version": "2.7.6",
"python_path": "d3m.primitives.feature_extraction.l1_low_rank.L1LowRank",
"name": "Fast Approximate Entrywise L1-Norm Low Rank Factorization",
"digest": "37f56daf63a1524cff6c13f1734ca9c0acb5e6ffe1bd5c3de36fc874b2de4057"
},
"arguments": {
"inputs": {
......@@ -154,21 +154,7 @@
{
"id": "produce"
}
],
"hyperparams": {
"n_components": {
"type": "VALUE",
"data": 8
},
"beta": {
"type": "VALUE",
"data": 1e-08
},
"alpha": {
"type": "VALUE",
"data": 1e-06
}
}
]
},
{
"type": "PRIMITIVE",
......@@ -194,11 +180,11 @@
{
"type": "PRIMITIVE",
"primitive": {
"id": "f40ffdc0-1d6d-3234-8fd0-a3e4d7a136a7",
"id": "2fb16403-8509-3f02-bdbf-9696e2fcad55",
"version": "2019.4.4",
"python_path": "d3m.primitives.regression.linear_svr.SKlearn",
"name": "sklearn.svm.classes.LinearSVR",
"digest": "9486ccb5f57d8733be166c41021fa94f3db0669d11e7f66e898a7925b32dafea"
"python_path": "d3m.primitives.regression.ridge.SKlearn",
"name": "sklearn.linear_model.ridge.Ridge",
"digest": "77ede230fa6d28d1c71d3a3a6814e41fda00a29a201035c157d5ac38bbc6ff52"
},
"arguments": {
"inputs": {
......@@ -214,7 +200,20 @@
{
"id": "produce"
}
]
],
"hyperparams": {
"max_iter": {
"type": "VALUE",
"data": {
"case": "int",
"value": 10000
}
},
"tol": {
"type": "VALUE",
"data": 0.01
}
}
},
{
"type": "PRIMITIVE",
......@@ -242,5 +241,5 @@
]
}
],
"digest": "9dc11479ea075db0910647bc712347f243b0cc82a2cb30b8b788f17eed291378"
"digest": "b105b867887643fef3989b18431db42138aa35dc4dee22a817857b86702de877"
}
\ No newline at end of file
{
"id": "86122897-5cc1-4bff-9228-d4a7efe1aed7",
"schema": "https://metadata.datadrivendiscovery.org/schemas/v0/pipeline.json",
"created": "2019-06-17T02:03:26.410404Z",
"inputs": [
{
"name": "inputs"
}
],
"outputs": [
{
"data": "steps.9.produce",
"name": "output"
}
],
"steps": [
{
"type": "PRIMITIVE",
"primitive": {
"id": "4b42ce1e-9b98-4a25-b68e-fad13311eb65",
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.dataset_to_dataframe.Common",
"name": "Extract a DataFrame from a Dataset",
"digest": "0d46a2c5bc374e305682dc4f1c322518c07638153a8365034a513ea46960802b"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "inputs.0"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "d510cb7a-1782-4f51-b44c-58f0236e47c7",
"version": "0.5.0",
"python_path": "d3m.primitives.data_transformation.column_parser.DataFrameCommon",
"name": "Parses strings into their types",
"digest": "312cacc014497dd674e34765f6eb54430e594c591e760da0383c87844753d2ce"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.0.produce"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "d016df89-de62-3c53-87ed-c06bb6a23cde",
"version": "2019.4.4",
"python_path": "d3m.primitives.data_cleaning.imputer.SKlearn",
"name": "sklearn.impute.SimpleImputer",
"digest": "9878fdeb255c5b4fb2beaf053e68b2913e3d7b1c26e40c530c1cb4fe562fde26"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.1.produce"
}
},
"outputs": [
{
"id": "produce"
}
],
"hyperparams": {
"return_result": {
"type": "VALUE",
"data": "replace"
},
"use_semantic_types": {
"type": "VALUE",
"data": true
}
}
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "4503a4c6-42f7-45a1-a1d4-ed69699cf5e1",
"version": "0.2.0",
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon",
"name": "Extracts columns by semantic type",
"digest": "297a4943484bcd532650d5727e23b3d11ca702688d7b64dfb5df8bf1282eaa47"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.2.produce"
}
},
"outputs": [
{
"id": "produce"
}
],
"hyperparams": {
"semantic_types": {
"type": "VALUE",
"data": [
"https://metadata.datadrivendiscovery.org/types/Attribute"
]
}
}
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "4503a4c6-42f7-45a1-a1d4-ed69699cf5e1",
"version": "0.2.0",
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon",
"name": "Extracts columns by semantic type",
"digest": "297a4943484bcd532650d5727e23b3d11ca702688d7b64dfb5df8bf1282eaa47"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.2.produce"
}
},
"outputs": [
{
"id": "produce"
}
],
"hyperparams": {
"semantic_types": {
"type": "VALUE",
"data": [
"https://metadata.datadrivendiscovery.org/types/TrueTarget"
]
}
}
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "34f71b2e-17bb-488d-a2ba-b60b8c305539",
"version": "0.1.0",
"python_path": "d3m.primitives.data_transformation.dataframe_to_ndarray.Common",
"name": "DataFrame to ndarray converter",
"digest": "71862085ea87f4f68abc9f49b4fa661b1ee70a4f3a97f1c1bb4343e2d27dbd37"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.3.produce"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "2b39791f-03aa-41ea-b370-abdd043a8887",
"version": "2.7.6",
"python_path": "d3m.primitives.feature_extraction.pca_features.RandomizedPolyPCA",
"name": "Randomized Principal Component Analysis using Polynomial Features",
"digest": "77b56d8aa6b260ed14aaee9a9822a85baa314f5360c4afd1c6798ac17af47ccb"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.5.produce"
}
},
"outputs": [
{
"id": "produce"
}
],
"hyperparams": {
"n_components": {
"type": "VALUE",
"data": 8
},
"degree": {
"type": "VALUE",
"data": 1
}
}
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "f5241b2e-64f7-44ad-9675-df3d08066437",
"version": "0.1.0",
"python_path": "d3m.primitives.data_transformation.ndarray_to_dataframe.Common",
"name": "ndarray to Dataframe converter",
"digest": "801aa292c7b8ceb0a7dba20618aa7949b289551d8cd314e5de14190084200fc9"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.6.produce"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "01d2c086-91bf-3ca5-b023-5139cf239c77",
"version": "2019.4.4",