Commit 17b5d78b authored by Sujen's avatar Sujen

Disable failing primitives

parent cdda8ee7
{
"problem":"38_sick_problem",
"full_inputs":[
"38_sick_dataset"
],
"train_inputs":[
"38_sick_dataset_TRAIN"
],
"test_inputs":[
"38_sick_dataset_TEST"
],
"score_inputs":[
"38_sick_dataset_SCORE"
]
}
\ No newline at end of file
{
"problem":"196_autoMpg_problem",
"full_inputs":[
"196_autoMpg_dataset"
],
"train_inputs":[
"196_autoMpg_dataset_TRAIN"
],
"test_inputs":[
"196_autoMpg_dataset_TEST"
],
"score_inputs":[
"196_autoMpg_dataset_SCORE"
]
}
\ No newline at end of file
{
"problem":"38_sick_problem",
"full_inputs":[
"38_sick_dataset"
],
"train_inputs":[
"38_sick_dataset_TRAIN"
],
"test_inputs":[
"38_sick_dataset_TEST"
],
"score_inputs":[
"38_sick_dataset_SCORE"
]
}
\ No newline at end of file
......@@ -21,7 +21,7 @@
"installation": [
{
"type": "PIP",
"package_uri": "git+https://github.com/usc-isi-i2/dsbox-primitives@cae151551eb33219338b725cd5543bca4e5dbceb#egg=dsbox-primitives"
"package_uri": "git+https://github.com/usc-isi-i2/dsbox-primitives@be7fde1416f3de3644ffba84efda207e4cfc4373#egg=dsbox-primitives"
}
],
"precondition": [],
......@@ -171,5 +171,5 @@
}
},
"structural_type": "dsbox.datapreprocessing.featurizer.pass.do_nothing.DoNothing",
"digest": "1e7db5e176d8f1fbc6ef663dc408888b97d0ba51b678d226ef82ccb9246d48c6"
"digest": "8560efac6dea7ab34c3ad736b0110012f7d6d1405fcaebfd722ffa9fdf8dbe49"
}
{
"problem":"196_autoMpg_problem",
"full_inputs":[
"196_autoMpg_dataset"
],
"train_inputs":[
"196_autoMpg_dataset_TRAIN"
],
"test_inputs":[
"196_autoMpg_dataset_TEST"
],
"score_inputs":[
"196_autoMpg_dataset_SCORE"
]
}
\ No newline at end of file
{
"problem":"38_sick_problem",
"full_inputs":[
"38_sick_dataset"
],
"train_inputs":[
"38_sick_dataset_TRAIN"
],
"test_inputs":[
"38_sick_dataset_TEST"
],
"score_inputs":[
"38_sick_dataset_SCORE"
]
}
\ No newline at end of file
......@@ -21,7 +21,7 @@
"installation": [
{
"type": "PIP",
"package_uri": "git+https://github.com/usc-isi-i2/dsbox-primitives@cae151551eb33219338b725cd5543bca4e5dbceb#egg=dsbox-primitives"
"package_uri": "git+https://github.com/usc-isi-i2/dsbox-primitives@be7fde1416f3de3644ffba84efda207e4cfc4373#egg=dsbox-primitives"
}
],
"precondition": [],
......@@ -171,5 +171,5 @@
}
},
"structural_type": "dsbox.datapreprocessing.featurizer.pass.do_nothing_dataset.DoNothingForDataset",
"digest": "b812133ac1737bbcb60cffbc24d03834a12f38b558e6233b5c0d352e51f0ae54"
"digest": "250de33640cde29b712ca319c571d7a2e54fd43fe1647e522fc63286db84c37f"
}
{
"id":"75ee0045-876e-4070-b2db-187ce91889c7",
"schema":"https://metadata.datadrivendiscovery.org/schemas/v0/pipeline.json",
"created":"2019-05-16T20:50:19.369510Z",
"inputs":[
{
"name":"input dataset"
}
],
"outputs":[
{
"data":"steps.6.produce",
"name":"predictions of input dataset"
}
],
"steps":[
{
"type":"PRIMITIVE",
"primitive":{
"id":"f31f8c1f-d1c5-43e5-a4b2-2ae4a761ef2e",
"version":"0.2.0",
"python_path":"d3m.primitives.data_transformation.denormalize.Common",
"name":"Denormalize datasets",
"digest":"be65aa8b920356392be6ecf2a3244c06d87d8611a2379e0bbba6ad92b4b5ffb9"
},
"arguments":{
"inputs":{
"type":"CONTAINER",
"data":"inputs.0"
}
},
"outputs":[
{
"id":"produce"
}
]
},
{
"type":"PRIMITIVE",
"primitive":{
"id":"4b42ce1e-9b98-4a25-b68e-fad13311eb65",
"version":"0.3.0",
"python_path":"d3m.primitives.data_transformation.dataset_to_dataframe.Common",
"name":"Extract a DataFrame from a Dataset",
"digest":"b8251591d8f5f03e1c4d3ec740016c386ad6c20216cfd7d7dd9b8b2e3ab0595f"
},
"arguments":{
"inputs":{
"type":"CONTAINER",
"data":"steps.0.produce"
}
},
"outputs":[
{
"id":"produce"
}
]
},
{
"type":"PRIMITIVE",
"primitive":{
"id":"4503a4c6-42f7-45a1-a1d4-ed69699cf5e1",
"version":"0.2.0",
"python_path":"d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon",
"name":"Extracts columns by semantic type",
"digest":"a0d61e03605d9e487c29de5d88a1c7f32d9aef8e23a413b794dad2f4da8ee836"
},
"arguments":{
"inputs":{
"type":"CONTAINER",
"data":"steps.1.produce"
}
},
"outputs":[
{
"id":"produce"
}
],
"hyperparams":{
"semantic_types":{
"type":"VALUE",
"data":[
"https://metadata.datadrivendiscovery.org/types/Target",
"https://metadata.datadrivendiscovery.org/types/SuggestedTarget"
]
}
}
},
{
"type":"PRIMITIVE",
"primitive":{
"id":"7ddf2fd8-2f7f-4e53-96a7-0d9f5aeecf93",
"version":"1.5.0",
"python_path":"d3m.primitives.data_transformation.to_numeric.DSBOX",
"name":"ISI DSBox To Numeric DataFrame",
"digest":"c8a6dff4d8982c2b2ec772ff00fdeb66b353ce5fea992dabc4b3e3cf1dd07451"
},
"arguments":{
"inputs":{
"type":"CONTAINER",
"data":"steps.2.produce"
}
},
"outputs":[
{
"id":"produce"
}
],
"hyperparams":{
"drop_non_numeric_columns":{
"type":"VALUE",
"data":false
}
}
},
{
"type":"PRIMITIVE",
"primitive":{
"id":"dsbox-featurizer-timeseries-to-dataframe",
"version":"1.5.0",
"python_path":"d3m.primitives.data_preprocessing.time_series_to_list.DSBOX",
"name":"DSBox Timeseries Featurizer dataframe to List Transformer",
"digest":"72c000debc9b3f079e45387b910595ac1083f5d93bb87124c7ed822e92f29af0"
},
"arguments":{
"inputs":{
"type":"CONTAINER",
"data":"steps.1.produce"
}
},
"outputs":[
{
"id":"produce"
}
]
},
{
"type":"PRIMITIVE",
"primitive":{
"id":"dsbox.timeseries_featurization.random_projection",
"version":"1.5.0",
"python_path":"d3m.primitives.feature_extraction.random_projection_timeseries_featurization.DSBOX",
"name":"DSBox random projection timeseries featurization ",
"digest":"39acea31a2f3dca79d0e6ef974595d33b3322c458c1aceff393f87d0d94cb349"
},
"arguments":{
"inputs":{
"type":"CONTAINER",
"data":"steps.4.produce"
}
},
"outputs":[
{
"id":"produce"
}
],
"hyperparams":{
"generate_metadata":{
"type":"VALUE",
"data":true
}
}
},
{
"type":"PRIMITIVE",
"primitive":{
"id":"1dd82833-5692-39cb-84fb-2455683075f3",
"version":"2019.4.4",
"python_path":"d3m.primitives.classification.random_forest.SKlearn",
"name":"sklearn.ensemble.forest.RandomForestClassifier",
"digest":"b1c373d38eeffe7ca7e2fe12b7cae22b2518b9bef3cbf4c7b9167af3a972bee3"
},
"arguments":{
"inputs":{
"type":"CONTAINER",
"data":"steps.5.produce"
},
"outputs":{
"type":"CONTAINER",
"data":"steps.3.produce"
}
},
"outputs":[
{
"id":"produce"
}
],
"hyperparams":{
"add_index_columns":{
"type":"VALUE",
"data":true
},
"use_semantic_types":{
"type":"VALUE",
"data":true
}
}
}
],
"name":"Default_timeseries_collection_template:140643127129504",
"description":"",
"digest":"80f3ffca918e80a44c1633a5f4b467e6233c95c6e6172736adf5826233f74a86"
}
\ No newline at end of file
{
"problem":"uu1_datasmash_problem",
"full_inputs":[
"uu1_datasmash_dataset"
],
"train_inputs":[
"uu1_datasmash_dataset_TRAIN"
],
"test_inputs":[
"uu1_datasmash_dataset_TEST"
],
"score_inputs":[
"uu1_datasmash_dataset_SCORE"
]
}
\ No newline at end of file
......@@ -22,7 +22,7 @@
"installation": [
{
"type": "PIP",
"package_uri": "git+https://github.com/usc-isi-i2/dsbox-primitives@cae151551eb33219338b725cd5543bca4e5dbceb#egg=dsbox-primitives"
"package_uri": "git+https://github.com/usc-isi-i2/dsbox-primitives@be7fde1416f3de3644ffba84efda207e4cfc4373#egg=dsbox-primitives"
}
],
"precondition": [],
......@@ -172,5 +172,5 @@
}
},
"structural_type": "dsbox.datapreprocessing.featurizer.timeseries.timeseries_to_list.TimeseriesToList",
"digest": "72c000debc9b3f079e45387b910595ac1083f5d93bb87124c7ed822e92f29af0"
"digest": "0d5d4291cbcad24c0494dcafca159f5bbc2dd30eb788526a98356a4bf44975c7"
}
{
"id":"043d1f4d-0c36-422e-9149-84377e29575d",
"schema":"https://metadata.datadrivendiscovery.org/schemas/v0/pipeline.json",
"created":"2019-05-16T20:50:19.320520Z",
"inputs":[
{
"name":"input dataset"
}
],
"outputs":[
{
"data":"steps.6.produce",
"name":"predictions of input dataset"
}
],
"steps":[
{
"type":"PRIMITIVE",
"primitive":{
"id":"f31f8c1f-d1c5-43e5-a4b2-2ae4a761ef2e",
"version":"0.2.0",
"python_path":"d3m.primitives.data_transformation.denormalize.Common",
"name":"Denormalize datasets",
"digest":"be65aa8b920356392be6ecf2a3244c06d87d8611a2379e0bbba6ad92b4b5ffb9"
},
"arguments":{
"inputs":{
"type":"CONTAINER",
"data":"inputs.0"
}
},
"outputs":[
{
"id":"produce"
}
]
},
{
"type":"PRIMITIVE",
"primitive":{
"id":"4b42ce1e-9b98-4a25-b68e-fad13311eb65",
"version":"0.3.0",
"python_path":"d3m.primitives.data_transformation.dataset_to_dataframe.Common",
"name":"Extract a DataFrame from a Dataset",
"digest":"b8251591d8f5f03e1c4d3ec740016c386ad6c20216cfd7d7dd9b8b2e3ab0595f"
},
"arguments":{
"inputs":{
"type":"CONTAINER",
"data":"steps.0.produce"
}
},
"outputs":[
{
"id":"produce"
}
]
},
{
"type":"PRIMITIVE",
"primitive":{
"id":"4503a4c6-42f7-45a1-a1d4-ed69699cf5e1",
"version":"0.2.0",
"python_path":"d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon",
"name":"Extracts columns by semantic type",
"digest":"a0d61e03605d9e487c29de5d88a1c7f32d9aef8e23a413b794dad2f4da8ee836"
},
"arguments":{
"inputs":{
"type":"CONTAINER",
"data":"steps.1.produce"
}
},
"outputs":[
{
"id":"produce"
}
],
"hyperparams":{
"semantic_types":{
"type":"VALUE",
"data":[
"https://metadata.datadrivendiscovery.org/types/Target",
"https://metadata.datadrivendiscovery.org/types/SuggestedTarget"
]
}
}
},
{
"type":"PRIMITIVE",
"primitive":{
"id":"7ddf2fd8-2f7f-4e53-96a7-0d9f5aeecf93",
"version":"1.5.0",
"python_path":"d3m.primitives.data_transformation.to_numeric.DSBOX",
"name":"ISI DSBox To Numeric DataFrame",
"digest":"c8a6dff4d8982c2b2ec772ff00fdeb66b353ce5fea992dabc4b3e3cf1dd07451"
},
"arguments":{
"inputs":{
"type":"CONTAINER",
"data":"steps.2.produce"
}
},
"outputs":[
{
"id":"produce"
}
],
"hyperparams":{
"drop_non_numeric_columns":{
"type":"VALUE",
"data":false
}
}
},
{
"type":"PRIMITIVE",
"primitive":{
"id":"dsbox-featurizer-timeseries-to-dataframe",
"version":"1.5.0",
"python_path":"d3m.primitives.data_preprocessing.time_series_to_list.DSBOX",
"name":"DSBox Timeseries Featurizer dataframe to List Transformer",
"digest":"72c000debc9b3f079e45387b910595ac1083f5d93bb87124c7ed822e92f29af0"
},
"arguments":{
"inputs":{
"type":"CONTAINER",
"data":"steps.1.produce"
}
},
"outputs":[
{
"id":"produce"
}
]
},
{
"type":"PRIMITIVE",
"primitive":{
"id":"dsbox.timeseries_featurization.random_projection",
"version":"1.5.0",
"python_path":"d3m.primitives.feature_extraction.random_projection_timeseries_featurization.DSBOX",
"name":"DSBox random projection timeseries featurization ",
"digest":"39acea31a2f3dca79d0e6ef974595d33b3322c458c1aceff393f87d0d94cb349"
},
"arguments":{
"inputs":{
"type":"CONTAINER",
"data":"steps.4.produce"
}
},
"outputs":[
{
"id":"produce"
}
],
"hyperparams":{
"generate_metadata":{
"type":"VALUE",
"data":true
}
}
},
{
"type":"PRIMITIVE",
"primitive":{
"id":"1dd82833-5692-39cb-84fb-2455683075f3",
"version":"2019.4.4",
"python_path":"d3m.primitives.classification.random_forest.SKlearn",
"name":"sklearn.ensemble.forest.RandomForestClassifier",
"digest":"b1c373d38eeffe7ca7e2fe12b7cae22b2518b9bef3cbf4c7b9167af3a972bee3"
},
"arguments":{
"inputs":{
"type":"CONTAINER",
"data":"steps.5.produce"
},
"outputs":{
"type":"CONTAINER",
"data":"steps.3.produce"
}
},
"outputs":[
{
"id":"produce"
}
],
"hyperparams":{
"add_index_columns":{
"type":"VALUE",
"data":true
},
"use_semantic_types":{
"type":"VALUE",
"data":true
}
}
}
],
"name":"Default_timeseries_collection_template:140643025191416",
"description":"",
"digest":"988e348f2d8547a512056e20f177e7a27aad7164423d01fe101c423226022e19"
}
\ No newline at end of file
{
"problem":"uu1_datasmash_problem",
"full_inputs":[
"uu1_datasmash_dataset"
],
"train_inputs":[
"uu1_datasmash_dataset_TRAIN"
],
"test_inputs":[
"uu1_datasmash_dataset_TEST"
],
"score_inputs":[
"uu1_datasmash_dataset_SCORE"
]
}
\ No newline at end of file
......@@ -2,7 +2,7 @@
"id": "dsbox.timeseries_featurization.random_projection",
"version": "1.5.0",
"name": "DSBox random projection timeseries featurization ",
"description": "classdocs\n\nAttributes\n----------\nmetadata : PrimitiveMetadata\n Primitive's metadata. Available as a class attribute.\nlogger : Logger\n Primitive's logger. Available as a class attribute.\nhyperparams : Hyperparams\n Hyperparams passed to the constructor.\nrandom_seed : int\n Random seed passed to the constructor.\ndocker_containers : Dict[str, DockerContainer]\n A dict mapping Docker image keys from primitive's metadata to (named) tuples containing\n container's address under which the container is accessible by the primitive, and a\n dict mapping exposed ports to ports on that address.\nvolumes : Dict[str, str]\n A dict mapping volume keys from primitive's metadata to file and directory paths\n where downloaded and extracted files are available to the primitive.\ntemporary_directory : str\n An absolute path to a temporary directory a primitive can use to store any files\n for the duration of the current