Commit 17a1acc8 authored by Mitar's avatar Mitar

Merge branch 'michigan' into 'master'

Added updated Michigan primitivees to 5.8 release.

See merge request !131
parents 73816d00 65d9c992
{
"id": "021b2b86-e1c7-4466-83fc-f54655976b4d",
"schema": "https://metadata.datadrivendiscovery.org/schemas/v0/pipeline.json",
"created": "2019-05-25T00:25:58.383925Z",
"inputs": [
{
"name": "inputs"
}
],
"outputs": [
{
"data": "steps.6.produce",
"name": "output"
}
],
"steps": [
{
"type": "PRIMITIVE",
"primitive": {
"id": "4b42ce1e-9b98-4a25-b68e-fad13311eb65",
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.dataset_to_dataframe.Common",
"name": "Extract a DataFrame from a Dataset",
"digest": "b8251591d8f5f03e1c4d3ec740016c386ad6c20216cfd7d7dd9b8b2e3ab0595f"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "inputs.0"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "d510cb7a-1782-4f51-b44c-58f0236e47c7",
"version": "0.5.0",
"python_path": "d3m.primitives.data_transformation.column_parser.DataFrameCommon",
"name": "Parses strings into their types",
"digest": "d268f582f5bf30206f1e43ef46f435576a30413132bc73279f3fca36937184eb"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.0.produce"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "4503a4c6-42f7-45a1-a1d4-ed69699cf5e1",
"version": "0.2.0",
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon",
"name": "Extracts columns by semantic type",
"digest": "a0d61e03605d9e487c29de5d88a1c7f32d9aef8e23a413b794dad2f4da8ee836"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.1.produce"
}
},
"outputs": [
{
"id": "produce"
}
],
"hyperparams": {
"semantic_types": {
"type": "VALUE",
"data": [
"https://metadata.datadrivendiscovery.org/types/Attribute"
]
}
}
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "34f71b2e-17bb-488d-a2ba-b60b8c305539",
"version": "0.1.0",
"python_path": "d3m.primitives.data_transformation.dataframe_to_ndarray.Common",
"name": "DataFrame to ndarray converter",
"digest": "4fb135af3e84bc222c9cca22719e05e5588e2357d4c56fac1c16bdf943d6a9c9"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.2.produce"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "6d94cfb0-4225-4446-b5b1-afd8803f2bf5",
"version": "0.0.5",
"python_path": "d3m.primitives.clustering.ekss.Umich",
"name": "EKSS",
"digest": "786942b9e1b7c765abb313e048899d7a031278a6554eb5982a2b44b10fc88616"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.3.produce"
}
},
"outputs": [
{
"id": "produce"
}
],
"hyperparams": {
"n_clusters": {
"type": "VALUE",
"data": 100
}
}
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "f5241b2e-64f7-44ad-9675-df3d08066437",
"version": "0.1.0",
"python_path": "d3m.primitives.data_transformation.ndarray_to_dataframe.Common",
"name": "ndarray to Dataframe converter",
"digest": "2047d35d00f5b3316a0f275a5ce8bf8be99d9c8653dbbeadc2cb332ca53fb4db"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.4.produce"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "8d38b340-f83f-4877-baaa-162f8e551736",
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.construct_predictions.DataFrameCommon",
"name": "Construct pipeline predictions output",
"digest": "1fb337b1987ecedebfa35bbd80ac6125f4a7f71435b02d3b349ef5547588bb71"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.5.produce"
},
"reference": {
"type": "CONTAINER",
"data": "steps.0.produce"
}
},
"outputs": [
{
"id": "produce"
}
]
}
],
"digest": "8edab86944be7d5ba0d8f64a8d2e9a9485745dfe06e64028a94971b2fdddfa51"
}
\ No newline at end of file
{
"problem": "1491_one_hundred_plants_margin_clust_problem",
"full_inputs": [
"1491_one_hundred_plants_margin_dataset"
],
"train_inputs": [
"1491_one_hundred_plants_margin_dataset_TRAIN"
],
"test_inputs": [
"1491_one_hundred_plants_margin_clust_problem"
],
"score_inputs": [
"1491_one_hundred_plants_margin_clust_problem"
]
}
\ No newline at end of file
{
"id": "1cda3657-049a-4eba-bccb-986f51da568b",
"schema": "https://metadata.datadrivendiscovery.org/schemas/v0/pipeline.json",
"created": "2019-05-25T00:25:56.137903Z",
"inputs": [
{
"name": "inputs"
}
],
"outputs": [
{
"data": "steps.6.produce",
"name": "output"
}
],
"steps": [
{
"type": "PRIMITIVE",
"primitive": {
"id": "4b42ce1e-9b98-4a25-b68e-fad13311eb65",
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.dataset_to_dataframe.Common",
"name": "Extract a DataFrame from a Dataset",
"digest": "b8251591d8f5f03e1c4d3ec740016c386ad6c20216cfd7d7dd9b8b2e3ab0595f"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "inputs.0"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "d510cb7a-1782-4f51-b44c-58f0236e47c7",
"version": "0.5.0",
"python_path": "d3m.primitives.data_transformation.column_parser.DataFrameCommon",
"name": "Parses strings into their types",
"digest": "d268f582f5bf30206f1e43ef46f435576a30413132bc73279f3fca36937184eb"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.0.produce"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "4503a4c6-42f7-45a1-a1d4-ed69699cf5e1",
"version": "0.2.0",
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon",
"name": "Extracts columns by semantic type",
"digest": "a0d61e03605d9e487c29de5d88a1c7f32d9aef8e23a413b794dad2f4da8ee836"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.1.produce"
}
},
"outputs": [
{
"id": "produce"
}
],
"hyperparams": {
"semantic_types": {
"type": "VALUE",
"data": [
"https://metadata.datadrivendiscovery.org/types/Attribute"
]
}
}
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "34f71b2e-17bb-488d-a2ba-b60b8c305539",
"version": "0.1.0",
"python_path": "d3m.primitives.data_transformation.dataframe_to_ndarray.Common",
"name": "DataFrame to ndarray converter",
"digest": "4fb135af3e84bc222c9cca22719e05e5588e2357d4c56fac1c16bdf943d6a9c9"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.2.produce"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "044e5c71-7507-4f58-a139-bc5481179d62",
"version": "0.0.5",
"python_path": "d3m.primitives.clustering.kss.Umich",
"name": "KSS",
"digest": "6839864b824fc39863e279341b2a7c22c267e575a33adaa06710ab70f45e15ad"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.3.produce"
}
},
"outputs": [
{
"id": "produce"
}
],
"hyperparams": {
"n_clusters": {
"type": "VALUE",
"data": 100
}
}
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "f5241b2e-64f7-44ad-9675-df3d08066437",
"version": "0.1.0",
"python_path": "d3m.primitives.data_transformation.ndarray_to_dataframe.Common",
"name": "ndarray to Dataframe converter",
"digest": "2047d35d00f5b3316a0f275a5ce8bf8be99d9c8653dbbeadc2cb332ca53fb4db"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.4.produce"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "8d38b340-f83f-4877-baaa-162f8e551736",
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.construct_predictions.DataFrameCommon",
"name": "Construct pipeline predictions output",
"digest": "1fb337b1987ecedebfa35bbd80ac6125f4a7f71435b02d3b349ef5547588bb71"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.5.produce"
},
"reference": {
"type": "CONTAINER",
"data": "steps.0.produce"
}
},
"outputs": [
{
"id": "produce"
}
]
}
],
"digest": "6c574eb6e5d4dc88bc02ac14fcd007eecf2eedb10d6c91d25fac52b856c3a524"
}
\ No newline at end of file
{
"problem": "1491_one_hundred_plants_margin_clust_problem",
"full_inputs": [
"1491_one_hundred_plants_margin_dataset"
],
"train_inputs": [
"1491_one_hundred_plants_margin_dataset_TRAIN"
],
"test_inputs": [
"1491_one_hundred_plants_margin_clust_problem"
],
"score_inputs": [
"1491_one_hundred_plants_margin_clust_problem"
]
}
\ No newline at end of file
{
"id": "4b3c645e-0829-4638-86e9-28c46080ec08",
"schema": "https://metadata.datadrivendiscovery.org/schemas/v0/pipeline.json",
"created": "2019-05-25T00:26:00.597234Z",
"inputs": [
{
"name": "inputs"
}
],
"outputs": [
{
"data": "steps.6.produce",
"name": "output"
}
],
"steps": [
{
"type": "PRIMITIVE",
"primitive": {
"id": "4b42ce1e-9b98-4a25-b68e-fad13311eb65",
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.dataset_to_dataframe.Common",
"name": "Extract a DataFrame from a Dataset",
"digest": "b8251591d8f5f03e1c4d3ec740016c386ad6c20216cfd7d7dd9b8b2e3ab0595f"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "inputs.0"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "d510cb7a-1782-4f51-b44c-58f0236e47c7",
"version": "0.5.0",
"python_path": "d3m.primitives.data_transformation.column_parser.DataFrameCommon",
"name": "Parses strings into their types",
"digest": "d268f582f5bf30206f1e43ef46f435576a30413132bc73279f3fca36937184eb"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.0.produce"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "4503a4c6-42f7-45a1-a1d4-ed69699cf5e1",
"version": "0.2.0",
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon",
"name": "Extracts columns by semantic type",
"digest": "a0d61e03605d9e487c29de5d88a1c7f32d9aef8e23a413b794dad2f4da8ee836"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.1.produce"
}
},
"outputs": [
{
"id": "produce"
}
],
"hyperparams": {
"semantic_types": {
"type": "VALUE",
"data": [
"https://metadata.datadrivendiscovery.org/types/Attribute"
]
}
}
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "34f71b2e-17bb-488d-a2ba-b60b8c305539",
"version": "0.1.0",
"python_path": "d3m.primitives.data_transformation.dataframe_to_ndarray.Common",
"name": "DataFrame to ndarray converter",
"digest": "4fb135af3e84bc222c9cca22719e05e5588e2357d4c56fac1c16bdf943d6a9c9"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.2.produce"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "83083e82-088b-47f4-9c0b-ba29adf5a51d",
"version": "0.0.5",
"python_path": "d3m.primitives.clustering.ssc_admm.Umich",
"name": "SSC_ADMM",
"digest": "36ad54db6c762854c95ba6c0c992ff0ff1a118a8c25754d0934f98d93f8be3aa"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.3.produce"
}
},
"outputs": [
{
"id": "produce"
}
],
"hyperparams": {
"n_clusters": {
"type": "VALUE",
"data": 100
}
}
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "f5241b2e-64f7-44ad-9675-df3d08066437",
"version": "0.1.0",
"python_path": "d3m.primitives.data_transformation.ndarray_to_dataframe.Common",
"name": "ndarray to Dataframe converter",
"digest": "2047d35d00f5b3316a0f275a5ce8bf8be99d9c8653dbbeadc2cb332ca53fb4db"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.4.produce"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "8d38b340-f83f-4877-baaa-162f8e551736",
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.construct_predictions.DataFrameCommon",
"name": "Construct pipeline predictions output",
"digest": "1fb337b1987ecedebfa35bbd80ac6125f4a7f71435b02d3b349ef5547588bb71"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.5.produce"
},
"reference": {
"type": "CONTAINER",
"data": "steps.0.produce"
}
},
"outputs": [
{
"id": "produce"
}
]
}
],
"digest": "74d55bd3d17543a25219fbb8b0136c0cf48183b3b7d07c651f12eda24543ae21"
}
\ No newline at end of file
{
"problem": "1491_one_hundred_plants_margin_clust_problem",
"full_inputs": [
"1491_one_hundred_plants_margin_dataset"
],
"train_inputs": [
"1491_one_hundred_plants_margin_dataset_TRAIN"
],
"test_inputs": [
"1491_one_hundred_plants_margin_clust_problem"
],
"score_inputs": [
"1491_one_hundred_plants_margin_clust_problem"
]
}
\ No newline at end of file
{
"id": "6a00c792-3595-4402-b467-2cd678ca885b",
"schema": "https://metadata.datadrivendiscovery.org/schemas/v0/pipeline.json",
"created": "2019-05-25T00:26:02.851964Z",
"inputs": [
{
"name": "inputs"
}
],
"outputs": [
{
"data": "steps.6.produce",
"name": "output"
}
],
"steps": [
{
"type": "PRIMITIVE",