Commit 0eee257f authored by Mitar's avatar Mitar

Merge branch 'jg/fix_VAR' into 'master'

Jg/fix var

See merge request !68
parents 3e906813 8d081bd4
{"id": "e773da63-d20f-4490-a604-62c8470b74ed", "schema": "https://metadata.datadrivendiscovery.org/schemas/v0/pipeline.json", "created": "2019-05-03T15:38:57.577477Z", "context": "TESTING", "inputs": [{"name": "inputs"}], "outputs": [{"data": "steps.0.produce", "name": "output predictions"}], "steps": [{"type": "PRIMITIVE", "primitive": {"id": "ca014488-6004-4b54-9403-5920fbe5a834", "version": "1.0.2", "python_path": "d3m.primitives.clustering.hdbscan.Hdbscan", "name": "hdbscan", "digest": "418c095df03c20a671d53168555e35469b9bcf0c827f73044f6650985ce20d0c"}, "arguments": {"inputs": {"type": "CONTAINER", "data": "inputs.0"}}, "outputs": [{"id": "produce"}]}], "digest": "e4f77e91869ba1f623e9634e9bc0f69196dc7373020257a0d598a775061eec92"}
\ No newline at end of file
{
"problem": "66_chlorineConcentration_problem",
"full_inputs": [
"66_chlorineConcentration_dataset"
],
"train_inputs": [
"66_chlorineConcentration_dataset_TRAIN"
],
"test_inputs": [
"66_chlorineConcentration_dataset_TEST"
],
"score_inputs": [
"66_chlorineConcentration_dataset_SCORE"
]
}
{"id": "e9f1dc12-9f5b-4d20-a958-0a03d62435be", "schema": "https://metadata.datadrivendiscovery.org/schemas/v0/pipeline.json", "created": "2019-04-24T19:16:15.451143Z", "context": "TESTING", "inputs": [{"name": "inputs"}], "outputs": [{"data": "steps.0.produce", "name": "output predictions"}], "steps": [{"type": "PRIMITIVE", "primitive": {"id": "77bf4b92-2faa-3e38-bb7e-804131243a7f", "version": "2.0.3", "python_path": "d3m.primitives.clustering.k_means.Sloth", "name": "Sloth"}, "arguments": {"inputs": {"type": "CONTAINER", "data": "inputs.0"}, "outputs": {"type": "CONTAINER", "data": "inputs.0"}}, "outputs": [{"id": "produce"}], "hyperparams": {"nclusters": {"type": "VALUE", "data": 4}}}]}
{
"problem": "66_chlorineConcentration_problem",
"full_inputs": [
"66_chlorineConcentration_dataset"
],
"train_inputs": [
"66_chlorineConcentration_dataset_TRAIN"
],
"test_inputs": [
"66_chlorineConcentration_dataset_TEST"
],
"score_inputs": [
"66_chlorineConcentration_dataset_SCORE"
]
}
{"id": "e37ac229-2d62-4564-950b-488948c0b1ea", "schema": "https://metadata.datadrivendiscovery.org/schemas/v0/pipeline.json", "created": "2019-05-03T15:51:19.186977Z", "context": "TESTING", "inputs": [{"name": "inputs"}], "outputs": [{"data": "steps.0.produce", "name": "output predictions"}], "steps": [{"type": "PRIMITIVE", "primitive": {"id": "2d6d3223-1b3c-49cc-9ddd-50f571818268", "version": "1.0.2", "python_path": "d3m.primitives.time_series_classification.k_neighbors.Kanine", "name": "kanine", "digest": "9d111d297bf566893fb00d154bb50a4bd677fe4d7e0297e3603408ca748dad37"}, "arguments": {"inputs": {"type": "CONTAINER", "data": "inputs.0"}, "outputs": {"type": "CONTAINER", "data": "inputs.0"}}, "outputs": [{"id": "produce"}]}], "digest": "2381aeff97b395ac8f8056df6fbd30b9fe5bcb0035a5a1a25c63a5d1a6c25b28"}
\ No newline at end of file
{
"problem": "66_chlorineConcentration_problem",
"full_inputs": [
"66_chlorineConcentration_dataset"
],
"train_inputs": [
"66_chlorineConcentration_dataset_TRAIN"
],
"test_inputs": [
"66_chlorineConcentration_dataset_TEST"
],
"score_inputs": [
"66_chlorineConcentration_dataset_SCORE"
]
}
{"id": "2e378b92-c4da-4cac-ac93-db14c67fe0e8", "schema": "https://metadata.datadrivendiscovery.org/schemas/v0/pipeline.json", "created": "2019-04-24T19:15:03.658765Z", "context": "TESTING", "inputs": [{"name": "inputs"}], "outputs": [{"data": "steps.0.produce", "name": "output predictions"}], "steps": [{"type": "PRIMITIVE", "primitive": {"id": "d351fcf8-5d6c-48d4-8bf6-a56fe11e62d6", "version": "1.0.2", "python_path": "d3m.primitives.time_series_classification.shapelet_learning.Shallot", "name": "shallot"}, "arguments": {"inputs": {"type": "CONTAINER", "data": "inputs.0"}, "outputs": {"type": "CONTAINER", "data": "inputs.0"}}, "outputs": [{"id": "produce"}], "hyperparams": {"epochs": {"type": "VALUE", "data": 10000}, "learning_rate": {"type": "VALUE", "data": 0.001}}}]}
{
"problem": "66_chlorineConcentration_problem",
"full_inputs": [
"66_chlorineConcentration_dataset"
],
"train_inputs": [
"66_chlorineConcentration_dataset_TRAIN"
],
"test_inputs": [
"66_chlorineConcentration_dataset_TEST"
],
"score_inputs": [
"66_chlorineConcentration_dataset_SCORE"
]
}
{"id": "d60c0d34-919e-4b8e-925d-ac6da0671eed", "schema": "https://metadata.datadrivendiscovery.org/schemas/v0/pipeline.json", "created": "2019-05-01T16:53:49.172945Z", "context": "TESTING", "inputs": [{"name": "inputs"}], "outputs": [{"data": "steps.1.produce", "name": "output predictions"}], "steps": [{"type": "PRIMITIVE", "primitive": {"id": "4b42ce1e-9b98-4a25-b68e-fad13311eb65", "version": "0.3.0", "python_path": "d3m.primitives.data_transformation.dataset_to_dataframe.Common", "name": "Extract a DataFrame from a Dataset", "digest": "6ee6b94c42491892321d83c7a88a6a93b173c532d9783eafd520c7fd4bd03c55"}, "arguments": {"inputs": {"type": "CONTAINER", "data": "inputs.0"}}, "outputs": [{"id": "produce"}], "hyperparams": {"dataframe_resource": {"type": "VALUE", "data": "learningData"}}}, {"type": "PRIMITIVE", "primitive": {"id": "d473d487-2c32-49b2-98b5-a2b48571e07c", "version": "1.0.3", "python_path": "d3m.primitives.time_series_forecasting.arima.Parrot", "name": "parrot", "digest": "487941aa502738ad68c21496e08d8dfa4ef507c5a424342ff4094942f96848c4"}, "arguments": {"inputs": {"type": "CONTAINER", "data": "steps.0.produce"}, "outputs": {"type": "CONTAINER", "data": "steps.0.produce"}}, "outputs": [{"id": "produce"}], "hyperparams": {"seasonal_differencing": {"type": "VALUE", "data": 11}, "n_periods": {"type": "VALUE", "data": 21}}}], "digest": "5bff4f7f6afbf81113fd434ae2302bb93af22e1dbfe4f1722da913a8940c11f3"}
{
"problem": "56_sunspots_problem",
"full_inputs": [
"56_sunspots_dataset"
],
"train_inputs": [
"56_sunspots_dataset_TRAIN"
],
"test_inputs": [
"56_sunspots_dataset_TEST"
],
"score_inputs": [
"56_sunspots_dataset_SCORE"
]
}
{"id": "f89d77ba-4694-41a1-a27b-203761633ce0", "schema": "https://metadata.datadrivendiscovery.org/schemas/v0/pipeline.json", "created": "2019-05-02T17:53:23.878057Z", "context": "TESTING", "inputs": [{"name": "inputs"}], "outputs": [{"data": "steps.1.produce", "name": "output predictions"}], "steps": [{"type": "PRIMITIVE", "primitive": {"id": "4b42ce1e-9b98-4a25-b68e-fad13311eb65", "version": "0.3.0", "python_path": "d3m.primitives.data_transformation.dataset_to_dataframe.Common", "name": "Extract a DataFrame from a Dataset"}, "arguments": {"inputs": {"type": "CONTAINER", "data": "inputs.0"}}, "outputs": [{"id": "produce"}], "hyperparams": {"dataframe_resource": {"type": "VALUE", "data": "learningData"}}}, {"type": "PRIMITIVE", "primitive": {"id": "76b5a479-c209-4d94-92b5-7eba7a4d4499", "version": "1.0.0", "python_path": "d3m.primitives.time_series_forecasting.vector_autoregression.VAR", "name": "VAR"}, "arguments": {"inputs": {"type": "CONTAINER", "data": "steps.0.produce"}, "outputs": {"type": "CONTAINER", "data": "steps.0.produce"}}, "outputs": [{"id": "produce"}], "hyperparams": {"datetime_index": {"type": "VALUE", "data": [3, 2]}, "filter_index": {"type": "VALUE", "data": 1}, "datetime_filter": {"type": "VALUE", "data": 2}, "n_periods": {"type": "VALUE", "data": 52}, "interval": {"type": "VALUE", "data": 26}, "datetime_interval_exception": {"type": "VALUE", "data": "2017"}}}]}
{
"problem": "LL1_736_stock_market_problem",
"full_inputs": [
"LL1_736_stock_market_dataset"
],
"train_inputs": [
"LL1_736_stock_market_dataset_TRAIN"
],
"test_inputs": [
"LL1_736_stock_market_dataset_TEST"
],
"score_inputs": [
"LL1_736_stock_market_dataset_SCORE"
]
}
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment