Commit f99a34d9 authored by Jarod Wang's avatar Jarod Wang Committed by Sujen

support cpu-only mode

include contrib/ in installation
parent 0bff0c5c
{
"id": "9bd15fdf-f3d2-43da-9e69-3945ce1d18ea",
"schema": "https://metadata.datadrivendiscovery.org/schemas/v0/pipeline.json",
"created": "2019-06-18T19:47:11.675482Z",
"inputs": [
{
"name": "dataset inputs"
}
],
"outputs": [
{
"data": "steps.6.produce",
"name": "output predictions"
}
],
"steps": [
{
"type": "PRIMITIVE",
"primitive": {
"id": "4b42ce1e-9b98-4a25-b68e-fad13311eb65",
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.dataset_to_dataframe.Common",
"name": "Extract a DataFrame from a Dataset",
"digest": "45f8322097914f9c95c4f9a8224d02db5d79b7166c74115e2eea7b23ccc13510"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "inputs.0"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "d510cb7a-1782-4f51-b44c-58f0236e47c7",
"version": "0.5.0",
"python_path": "d3m.primitives.data_transformation.column_parser.DataFrameCommon",
"name": "Parses strings into their types",
"digest": "d41ad0c56ef55a233b21f4a4d8df1ac782aca7a78ef98dbfb72215690b3e9850"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.0.produce"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "4503a4c6-42f7-45a1-a1d4-ed69699cf5e1",
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon",
"name": "Extracts columns by semantic type",
"digest": "e91e0f7569ad53b6d4b8c01641f80fb0aa764b5dd3ae71dd2fbb433fa62c7f81"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.1.produce"
}
},
"outputs": [
{
"id": "produce"
}
],
"hyperparams": {
"semantic_types": {
"type": "VALUE",
"data": [
"https://metadata.datadrivendiscovery.org/types/Attribute"
]
}
}
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "d016df89-de62-3c53-87ed-c06bb6a23cde",
"version": "2019.6.7",
"python_path": "d3m.primitives.data_cleaning.imputer.SKlearn",
"name": "sklearn.impute.SimpleImputer",
"digest": "d6902b0ef72b4cd6fc5f79054f7a534404c708e1244e94a2713a9dd525c78eed"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.2.produce"
}
},
"outputs": [
{
"id": "produce"
}
],
"hyperparams": {
"use_semantic_types": {
"type": "VALUE",
"data": true
},
"return_result": {
"type": "VALUE",
"data": "replace"
},
"strategy": {
"type": "VALUE",
"data": "median"
}
}
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "4503a4c6-42f7-45a1-a1d4-ed69699cf5e1",
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon",
"name": "Extracts columns by semantic type",
"digest": "e91e0f7569ad53b6d4b8c01641f80fb0aa764b5dd3ae71dd2fbb433fa62c7f81"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.1.produce"
}
},
"outputs": [
{
"id": "produce"
}
],
"hyperparams": {
"semantic_types": {
"type": "VALUE",
"data": [
"https://metadata.datadrivendiscovery.org/types/TrueTarget"
]
}
}
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "92360c43-6e6f-4ff3-b1e6-5851792d8fcc",
"version": "3.0.1",
"python_path": "d3m.primitives.regression.cover_tree.Fastlvm",
"name": "Nearest Neighbor Regressor with Cover Trees",
"digest": "c120de5ac67d11d35aac150feed48605f42c09b4cb2013319c33b5060a4bf2b1"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.3.produce"
},
"outputs": {
"type": "CONTAINER",
"data": "steps.4.produce"
}
},
"outputs": [
{
"id": "produce"
}
],
"hyperparams": {
"k": {
"type": "VALUE",
"data": 49
}
}
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "8d38b340-f83f-4877-baaa-162f8e551736",
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.construct_predictions.DataFrameCommon",
"name": "Construct pipeline predictions output",
"digest": "53087aaa6baf0ccc96b6525ca5b79fd4e51b4cce996ab39773a9b0b3e746bf05"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.5.produce"
},
"reference": {
"type": "CONTAINER",
"data": "steps.0.produce"
}
},
"outputs": [
{
"id": "produce"
}
]
}
],
"digest": "338bacaf0035ca306e2caf94bf867b2a0289c3160e654f38ef29763669f166a9"
}
\ No newline at end of file
{
"problem": "534_cps_85_wages_problem",
"full_inputs": [
"534_cps_85_wages_dataset"
],
"train_inputs": [
"534_cps_85_wages_dataset_TRAIN"
],
"test_inputs": [
"534_cps_85_wages_dataset_TEST"
],
"score_inputs": [
"534_cps_85_wages_dataset_SCORE"
]
}
\ No newline at end of file
{
"id": "fba50a71-7e92-44b2-8e70-5333ba2b5a04",
"schema": "https://metadata.datadrivendiscovery.org/schemas/v0/pipeline.json",
"created": "2019-06-18T19:50:34.192400Z",
"inputs": [
{
"name": "dataset inputs"
}
],
"outputs": [
{
"data": "steps.6.produce",
"name": "output predictions"
}
],
"steps": [
{
"type": "PRIMITIVE",
"primitive": {
"id": "4b42ce1e-9b98-4a25-b68e-fad13311eb65",
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.dataset_to_dataframe.Common",
"name": "Extract a DataFrame from a Dataset",
"digest": "45f8322097914f9c95c4f9a8224d02db5d79b7166c74115e2eea7b23ccc13510"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "inputs.0"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "d510cb7a-1782-4f51-b44c-58f0236e47c7",
"version": "0.5.0",
"python_path": "d3m.primitives.data_transformation.column_parser.DataFrameCommon",
"name": "Parses strings into their types",
"digest": "d41ad0c56ef55a233b21f4a4d8df1ac782aca7a78ef98dbfb72215690b3e9850"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.0.produce"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "4503a4c6-42f7-45a1-a1d4-ed69699cf5e1",
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon",
"name": "Extracts columns by semantic type",
"digest": "e91e0f7569ad53b6d4b8c01641f80fb0aa764b5dd3ae71dd2fbb433fa62c7f81"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.1.produce"
}
},
"outputs": [
{
"id": "produce"
}
],
"hyperparams": {
"semantic_types": {
"type": "VALUE",
"data": [
"https://metadata.datadrivendiscovery.org/types/Attribute"
]
}
}
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "d016df89-de62-3c53-87ed-c06bb6a23cde",
"version": "2019.6.7",
"python_path": "d3m.primitives.data_cleaning.imputer.SKlearn",
"name": "sklearn.impute.SimpleImputer",
"digest": "d6902b0ef72b4cd6fc5f79054f7a534404c708e1244e94a2713a9dd525c78eed"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.2.produce"
}
},
"outputs": [
{
"id": "produce"
}
],
"hyperparams": {
"use_semantic_types": {
"type": "VALUE",
"data": true
},
"return_result": {
"type": "VALUE",
"data": "replace"
},
"strategy": {
"type": "VALUE",
"data": "median"
}
}
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "4503a4c6-42f7-45a1-a1d4-ed69699cf5e1",
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon",
"name": "Extracts columns by semantic type",
"digest": "e91e0f7569ad53b6d4b8c01641f80fb0aa764b5dd3ae71dd2fbb433fa62c7f81"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.1.produce"
}
},
"outputs": [
{
"id": "produce"
}
],
"hyperparams": {
"semantic_types": {
"type": "VALUE",
"data": [
"https://metadata.datadrivendiscovery.org/types/TrueTarget"
]
}
}
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "92360c43-6e6f-4ff3-b1e6-5851792d8fcc",
"version": "3.0.1",
"python_path": "d3m.primitives.regression.cover_tree.Fastlvm",
"name": "Nearest Neighbor Regressor with Cover Trees",
"digest": "c120de5ac67d11d35aac150feed48605f42c09b4cb2013319c33b5060a4bf2b1"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.3.produce"
},
"outputs": {
"type": "CONTAINER",
"data": "steps.4.produce"
}
},
"outputs": [
{
"id": "produce"
}
],
"hyperparams": {
"k": {
"type": "VALUE",
"data": 49
}
}
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "8d38b340-f83f-4877-baaa-162f8e551736",
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.construct_predictions.DataFrameCommon",
"name": "Construct pipeline predictions output",
"digest": "53087aaa6baf0ccc96b6525ca5b79fd4e51b4cce996ab39773a9b0b3e746bf05"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.5.produce"
},
"reference": {
"type": "CONTAINER",
"data": "steps.0.produce"
}
},
"outputs": [
{
"id": "produce"
}
]
}
],
"digest": "286586ebd34224018fff6b919f238ba8feb0707a35a9fcaa26f7425e9f45bec9"
}
\ No newline at end of file
{
"problem": "LL0_207_autoPrice_problem",
"full_inputs": [
"LL0_207_autoPrice_dataset"
],
"train_inputs": [
"LL0_207_autoPrice_dataset_TRAIN"
],
"test_inputs": [
"LL0_207_autoPrice_dataset_TEST"
],
"score_inputs": [
"LL0_207_autoPrice_dataset_SCORE"
]
}
\ No newline at end of file
{
"id": "3ec2614d-9622-4a4f-9698-c5be392a5e40",
"schema": "https://metadata.datadrivendiscovery.org/schemas/v0/pipeline.json",
"created": "2019-06-18T20:40:58.052847Z",
"inputs": [
{
"name": "dataset inputs"
}
],
"outputs": [
{
"data": "steps.6.produce",
"name": "output predictions"
}
],
"steps": [
{
"type": "PRIMITIVE",
"primitive": {
"id": "4b42ce1e-9b98-4a25-b68e-fad13311eb65",
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.dataset_to_dataframe.Common",
"name": "Extract a DataFrame from a Dataset",
"digest": "45f8322097914f9c95c4f9a8224d02db5d79b7166c74115e2eea7b23ccc13510"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "inputs.0"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "d510cb7a-1782-4f51-b44c-58f0236e47c7",
"version": "0.5.0",
"python_path": "d3m.primitives.data_transformation.column_parser.DataFrameCommon",
"name": "Parses strings into their types",
"digest": "d41ad0c56ef55a233b21f4a4d8df1ac782aca7a78ef98dbfb72215690b3e9850"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.0.produce"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "4503a4c6-42f7-45a1-a1d4-ed69699cf5e1",
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon",
"name": "Extracts columns by semantic type",
"digest": "e91e0f7569ad53b6d4b8c01641f80fb0aa764b5dd3ae71dd2fbb433fa62c7f81"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.1.produce"
}
},
"outputs": [
{
"id": "produce"
}
],
"hyperparams": {
"semantic_types": {
"type": "VALUE",
"data": [
"https://metadata.datadrivendiscovery.org/types/Attribute"
]
}
}
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "d016df89-de62-3c53-87ed-c06bb6a23cde",
"version": "2019.6.7",
"python_path": "d3m.primitives.data_cleaning.imputer.SKlearn",
"name": "sklearn.impute.SimpleImputer",
"digest": "d6902b0ef72b4cd6fc5f79054f7a534404c708e1244e94a2713a9dd525c78eed"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.2.produce"
}
},
"outputs": [
{
"id": "produce"
}
],
"hyperparams": {
"use_semantic_types": {
"type": "VALUE",
"data": true
},
"return_result": {
"type": "VALUE",
"data": "replace"
}
}
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "4503a4c6-42f7-45a1-a1d4-ed69699cf5e1",
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon",
"name": "Extracts columns by semantic type",
"digest": "e91e0f7569ad53b6d4b8c01641f80fb0aa764b5dd3ae71dd2fbb433fa62c7f81"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.1.produce"
}
},
"outputs": [
{
"id": "produce"
}
],
"hyperparams": {