Commit e7206a9b authored by Ryan Szeto's avatar Ryan Szeto
Browse files

Update primitives from dvdmjohnson/d3m_michigan_primitives@8f32aed00b5d4c10a9e2d53d7cde582df718c71b

parent 3ae0f640
{
"id": "86551a72-1343-49c2-9de8-a412382c05d3",
"schema": "https://metadata.datadrivendiscovery.org/schemas/v0/pipeline.json",
"created": "2020-01-19T16:34:45.284838Z",
"inputs": [
{
"name": "inputs"
}
],
"outputs": [
{
"data": "steps.6.produce",
"name": "output"
}
],
"steps": [
{
"type": "PRIMITIVE",
"primitive": {
"id": "4b42ce1e-9b98-4a25-b68e-fad13311eb65",
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.dataset_to_dataframe.Common",
"name": "Extract a DataFrame from a Dataset",
"digest": "94e55565484a455ee0562db811200a7d1845fcdfea57e751588e05e23637df8a"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "inputs.0"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "d510cb7a-1782-4f51-b44c-58f0236e47c7",
"version": "0.6.0",
"python_path": "d3m.primitives.data_transformation.column_parser.Common",
"name": "Parses strings into their types",
"digest": "2900a4da1713c5bcaefcab2978a62b37e984e3742346497668d7a0299d47c0d3"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.0.produce"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "4503a4c6-42f7-45a1-a1d4-ed69699cf5e1",
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.Common",
"name": "Extracts columns by semantic type",
"digest": "89f151da0c89d001fa7ca2346c8f3d48505e052be222ed6fa29f89c1ce8a24af"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.1.produce"
}
},
"outputs": [
{
"id": "produce"
}
],
"hyperparams": {
"semantic_types": {
"type": "VALUE",
"data": [
"https://metadata.datadrivendiscovery.org/types/Attribute"
]
}
}
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "34f71b2e-17bb-488d-a2ba-b60b8c305539",
"version": "0.1.0",
"python_path": "d3m.primitives.data_transformation.dataframe_to_ndarray.Common",
"name": "DataFrame to ndarray converter",
"digest": "1db2b62027fbba648b3074f600a43585f5d343426f45f0f9a5c7c4a552193b19"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.2.produce"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "6d94cfb0-4225-4446-b5b1-afd8803f2bf5",
"version": "0.0.5",
"python_path": "d3m.primitives.clustering.ekss.Umich",
"name": "EKSS",
"digest": "268a3a5641513a444bf865f0602d830424035b24dd42c2d8c22260fc836d41a9"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.3.produce"
}
},
"outputs": [
{
"id": "produce"
}
],
"hyperparams": {
"n_clusters": {
"type": "VALUE",
"data": 200
}
}
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "f5241b2e-64f7-44ad-9675-df3d08066437",
"version": "0.1.0",
"python_path": "d3m.primitives.data_transformation.ndarray_to_dataframe.Common",
"name": "ndarray to Dataframe converter",
"digest": "78a96b46c72284abb24590ca6a9f98ee90c3d1cb9ea7ac37980f399647ba3207"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.4.produce"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "8d38b340-f83f-4877-baaa-162f8e551736",
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.construct_predictions.Common",
"name": "Construct pipeline predictions output",
"digest": "77711603dffb3d4d246624db7e8474aad3be09861ab99c1c4d2ea6b8d6d9770a"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.5.produce"
},
"reference": {
"type": "CONTAINER",
"data": "steps.0.produce"
}
},
"outputs": [
{
"id": "produce"
}
]
}
],
"digest": "16a53484c7bb268977c37b04d8ef63a4e36f7b035d4fb359863a7afe7a45062b"
}
\ No newline at end of file
......@@ -21,7 +21,7 @@
"installation": [
{
"type": "PIP",
"package_uri": "git+https://github.com/dvdmjohnson/d3m_michigan_primitives.git@e2f7e0c1af56c7e61da98ee421b3ade252be8a35#egg=spider"
"package_uri": "git+https://github.com/dvdmjohnson/d3m_michigan_primitives.git@8f32aed00b5d4c10a9e2d53d7cde582df718c71b#egg=spider"
},
{
"type": "UBUNTU",
......@@ -283,5 +283,5 @@
}
},
"structural_type": "spider.cluster.ekss.ekss.EKSS",
"digest": "268a3a5641513a444bf865f0602d830424035b24dd42c2d8c22260fc836d41a9"
"digest": "e96743669cfa49779b6690bb9fc2e5f732b683c63c91f39af064a7e58146554b"
}
{
"id": "1aeda97f-d729-4ca4-a86d-5269ee221d74",
"schema": "https://metadata.datadrivendiscovery.org/schemas/v0/pipeline.json",
"created": "2020-01-19T16:34:45.713880Z",
"inputs": [
{
"name": "inputs"
}
],
"outputs": [
{
"data": "steps.6.produce",
"name": "output"
}
],
"steps": [
{
"type": "PRIMITIVE",
"primitive": {
"id": "4b42ce1e-9b98-4a25-b68e-fad13311eb65",
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.dataset_to_dataframe.Common",
"name": "Extract a DataFrame from a Dataset",
"digest": "94e55565484a455ee0562db811200a7d1845fcdfea57e751588e05e23637df8a"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "inputs.0"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "d510cb7a-1782-4f51-b44c-58f0236e47c7",
"version": "0.6.0",
"python_path": "d3m.primitives.data_transformation.column_parser.Common",
"name": "Parses strings into their types",
"digest": "2900a4da1713c5bcaefcab2978a62b37e984e3742346497668d7a0299d47c0d3"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.0.produce"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "4503a4c6-42f7-45a1-a1d4-ed69699cf5e1",
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.Common",
"name": "Extracts columns by semantic type",
"digest": "89f151da0c89d001fa7ca2346c8f3d48505e052be222ed6fa29f89c1ce8a24af"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.1.produce"
}
},
"outputs": [
{
"id": "produce"
}
],
"hyperparams": {
"semantic_types": {
"type": "VALUE",
"data": [
"https://metadata.datadrivendiscovery.org/types/Attribute"
]
}
}
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "34f71b2e-17bb-488d-a2ba-b60b8c305539",
"version": "0.1.0",
"python_path": "d3m.primitives.data_transformation.dataframe_to_ndarray.Common",
"name": "DataFrame to ndarray converter",
"digest": "1db2b62027fbba648b3074f600a43585f5d343426f45f0f9a5c7c4a552193b19"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.2.produce"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "044e5c71-7507-4f58-a139-bc5481179d62",
"version": "0.0.5",
"python_path": "d3m.primitives.clustering.kss.Umich",
"name": "KSS",
"digest": "985c57ea3f43487d3db53e1c3c98abdeba11cb8e8f3dd77c0f8c34e951168d19"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.3.produce"
}
},
"outputs": [
{
"id": "produce"
}
],
"hyperparams": {
"n_clusters": {
"type": "VALUE",
"data": 5000
},
"dim_subspaces": {
"type": "VALUE",
"data": 1
}
}
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "f5241b2e-64f7-44ad-9675-df3d08066437",
"version": "0.1.0",
"python_path": "d3m.primitives.data_transformation.ndarray_to_dataframe.Common",
"name": "ndarray to Dataframe converter",
"digest": "78a96b46c72284abb24590ca6a9f98ee90c3d1cb9ea7ac37980f399647ba3207"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.4.produce"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "8d38b340-f83f-4877-baaa-162f8e551736",
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.construct_predictions.Common",
"name": "Construct pipeline predictions output",
"digest": "77711603dffb3d4d246624db7e8474aad3be09861ab99c1c4d2ea6b8d6d9770a"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.5.produce"
},
"reference": {
"type": "CONTAINER",
"data": "steps.0.produce"
}
},
"outputs": [
{
"id": "produce"
}
]
}
],
"digest": "1ea8678a2f7a81574744380da9f7e7e432b9cf852b6681e82921ac5f6e37cd33"
}
\ No newline at end of file
......@@ -20,7 +20,7 @@
"installation": [
{
"type": "PIP",
"package_uri": "git+https://github.com/dvdmjohnson/d3m_michigan_primitives.git@e2f7e0c1af56c7e61da98ee421b3ade252be8a35#egg=spider"
"package_uri": "git+https://github.com/dvdmjohnson/d3m_michigan_primitives.git@8f32aed00b5d4c10a9e2d53d7cde582df718c71b#egg=spider"
},
{
"type": "UBUNTU",
......@@ -240,5 +240,5 @@
}
},
"structural_type": "spider.cluster.kss.kss.KSS",
"digest": "985c57ea3f43487d3db53e1c3c98abdeba11cb8e8f3dd77c0f8c34e951168d19"
"digest": "7281e023765ddb2344537f979a3d8d675cc60eeabda2bfe19aabe8b119c22620"
}
{
"id": "f3eed54b-2c6d-4651-b76e-49416e27f34b",
"schema": "https://metadata.datadrivendiscovery.org/schemas/v0/pipeline.json",
"created": "2020-01-19T16:34:46.075183Z",
"inputs": [
{
"name": "inputs"
}
],
"outputs": [
{
"data": "steps.6.produce",
"name": "output"
}
],
"steps": [
{
"type": "PRIMITIVE",
"primitive": {
"id": "4b42ce1e-9b98-4a25-b68e-fad13311eb65",
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.dataset_to_dataframe.Common",
"name": "Extract a DataFrame from a Dataset",
"digest": "94e55565484a455ee0562db811200a7d1845fcdfea57e751588e05e23637df8a"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "inputs.0"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "d510cb7a-1782-4f51-b44c-58f0236e47c7",
"version": "0.6.0",
"python_path": "d3m.primitives.data_transformation.column_parser.Common",
"name": "Parses strings into their types",
"digest": "2900a4da1713c5bcaefcab2978a62b37e984e3742346497668d7a0299d47c0d3"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.0.produce"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "4503a4c6-42f7-45a1-a1d4-ed69699cf5e1",
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.Common",
"name": "Extracts columns by semantic type",
"digest": "89f151da0c89d001fa7ca2346c8f3d48505e052be222ed6fa29f89c1ce8a24af"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.1.produce"
}
},
"outputs": [
{
"id": "produce"
}
],
"hyperparams": {
"semantic_types": {
"type": "VALUE",
"data": [
"https://metadata.datadrivendiscovery.org/types/Attribute"
]
}
}
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "34f71b2e-17bb-488d-a2ba-b60b8c305539",
"version": "0.1.0",
"python_path": "d3m.primitives.data_transformation.dataframe_to_ndarray.Common",
"name": "DataFrame to ndarray converter",
"digest": "1db2b62027fbba648b3074f600a43585f5d343426f45f0f9a5c7c4a552193b19"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.2.produce"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "83083e82-088b-47f4-9c0b-ba29adf5a51d",
"version": "0.0.5",
"python_path": "d3m.primitives.clustering.ssc_admm.Umich",