Commit e5cad89d authored by Mitar's avatar Mitar
Browse files

Merge branch 'nd/goat-fixes' into 'master'

Nd/goat fixes

See merge request !76
parents bfea9949 4912f334
Pipeline #107386584 passed with stages
in 79 minutes and 21 seconds
{"id": "0b64a654-dcd8-40d9-b9eb-ad3f37121d2e", "schema": "https://metadata.datadrivendiscovery.org/schemas/v0/pipeline.json", "created": "2019-11-25T17:44:48.614774Z", "inputs": [{"name": "inputs"}], "outputs": [{"data": "steps.5.produce", "name": "output predictions"}], "steps": [{"type": "PRIMITIVE", "primitive": {"id": "f31f8c1f-d1c5-43e5-a4b2-2ae4a761ef2e", "version": "0.2.0", "python_path": "d3m.primitives.data_transformation.denormalize.Common", "name": "Denormalize datasets", "digest": "fa376cea4c03e06d896d6cce68f0a18661bbbb9ebe30653ea739785eedc02198"}, "arguments": {"inputs": {"type": "CONTAINER", "data": "inputs.0"}}, "outputs": [{"id": "produce"}]}, {"type": "PRIMITIVE", "primitive": {"id": "4b42ce1e-9b98-4a25-b68e-fad13311eb65", "version": "0.3.0", "python_path": "d3m.primitives.data_transformation.dataset_to_dataframe.Common", "name": "Extract a DataFrame from a Dataset", "digest": "bddea02d001c6633722c14643ec2a065fb4a977354ddbdf74282d076da77e530"}, "arguments": {"inputs": {"type": "CONTAINER", "data": "steps.0.produce"}}, "outputs": [{"id": "produce"}]}, {"type": "PRIMITIVE", "primitive": {"id": "c7c61da3-cf57-354e-8841-664853370106", "version": "1.0.7", "python_path": "d3m.primitives.data_cleaning.geocoding.Goat_forward", "name": "Goat_forward", "digest": "0fe821740a9b622392a423faf2d279d2b14eddbe6adb2776eae85119f4c2a552"}, "arguments": {"inputs": {"type": "CONTAINER", "data": "steps.1.produce"}}, "outputs": [{"id": "produce"}], "hyperparams": {"target_columns": {"type": "VALUE", "data": [1]}, "rampup_timeout": {"type": "VALUE", "data": 1000}}}, {"type": "PRIMITIVE", "primitive": {"id": "d510cb7a-1782-4f51-b44c-58f0236e47c7", "version": "0.5.0", "python_path": "d3m.primitives.data_transformation.column_parser.Common", "name": "Parses strings into their types", "digest": "c162d57bc73b6f30a0d600af31136b5028fe0efcd852efc15b9ad2826a2f391f"}, "arguments": {"inputs": {"type": "CONTAINER", "data": "steps.2.produce"}}, "outputs": [{"id": "produce"}]}, {"type": "PRIMITIVE", "primitive": {"id": "fe0841b7-6e70-4bc3-a56c-0670a95ebc6a", "version": "0.1.0", "python_path": "d3m.primitives.classification.xgboost_gbtree.Common", "name": "XGBoost GBTree classifier", "digest": "bd6ee736730320e83a7c773e6ce9657eea759acc5b316e75bdb5cbfd3aa5c904"}, "arguments": {"inputs": {"type": "CONTAINER", "data": "steps.3.produce"}, "outputs": {"type": "CONTAINER", "data": "steps.3.produce"}}, "outputs": [{"id": "produce"}], "hyperparams": {"return_result": {"type": "VALUE", "data": "replace"}}}, {"type": "PRIMITIVE", "primitive": {"id": "8d38b340-f83f-4877-baaa-162f8e551736", "version": "0.3.0", "python_path": "d3m.primitives.data_transformation.construct_predictions.Common", "name": "Construct pipeline predictions output", "digest": "5144bad4fea16168f6667c991e137067721dd0573c68ab1bf172ead9e2c82869"}, "arguments": {"inputs": {"type": "CONTAINER", "data": "steps.4.produce"}, "reference": {"type": "CONTAINER", "data": "steps.1.produce"}}, "outputs": [{"id": "produce"}]}], "digest": "a1cd9b908837afca40a38b4affd6a684bded34e043bbdf1d9818e1f3be9142f0"}
\ No newline at end of file
{"id": "a2628fde-eee4-469b-8bdf-8069133bf095", "schema": "https://metadata.datadrivendiscovery.org/schemas/v0/pipeline.json", "created": "2020-01-06T21:02:16.568134Z", "inputs": [{"name": "inputs"}], "outputs": [{"data": "steps.5.produce", "name": "output predictions"}], "steps": [{"type": "PRIMITIVE", "primitive": {"id": "f31f8c1f-d1c5-43e5-a4b2-2ae4a761ef2e", "version": "0.2.0", "python_path": "d3m.primitives.data_transformation.denormalize.Common", "name": "Denormalize datasets", "digest": "045a41ff82bd660bee6bf3fcb3cd8477af6af3d930a82c0c92184d01a93e3b30"}, "arguments": {"inputs": {"type": "CONTAINER", "data": "inputs.0"}}, "outputs": [{"id": "produce"}]}, {"type": "PRIMITIVE", "primitive": {"id": "4b42ce1e-9b98-4a25-b68e-fad13311eb65", "version": "0.3.0", "python_path": "d3m.primitives.data_transformation.dataset_to_dataframe.Common", "name": "Extract a DataFrame from a Dataset", "digest": "e796f76607089407dcd9b646eaccb244f06520e759112fd21846993f88fcd208"}, "arguments": {"inputs": {"type": "CONTAINER", "data": "steps.0.produce"}}, "outputs": [{"id": "produce"}]}, {"type": "PRIMITIVE", "primitive": {"id": "c7c61da3-cf57-354e-8841-664853370106", "version": "1.0.8", "python_path": "d3m.primitives.data_cleaning.geocoding.Goat_forward", "name": "Goat_forward", "digest": "0295d5bb87c934e6fb25729d751c01df42baf7bcef35a8cbc0e3cefa37ed7f4b"}, "arguments": {"inputs": {"type": "CONTAINER", "data": "steps.1.produce"}}, "outputs": [{"id": "produce"}], "hyperparams": {"target_columns": {"type": "VALUE", "data": [1]}, "cache_size": {"type": "VALUE", "data": 2000}}}, {"type": "PRIMITIVE", "primitive": {"id": "d510cb7a-1782-4f51-b44c-58f0236e47c7", "version": "0.6.0", "python_path": "d3m.primitives.data_transformation.column_parser.Common", "name": "Parses strings into their types", "digest": "c0be7426515ed38d05b03f3c08cb25db1d21e955f6d2d919ead8b5cb842bf2da"}, "arguments": {"inputs": {"type": "CONTAINER", "data": "steps.2.produce"}}, "outputs": [{"id": "produce"}]}, {"type": "PRIMITIVE", "primitive": {"id": "fe0841b7-6e70-4bc3-a56c-0670a95ebc6a", "version": "0.1.0", "python_path": "d3m.primitives.classification.xgboost_gbtree.Common", "name": "XGBoost GBTree classifier", "digest": "0483e07ef178862bfc0dbc0e6a85bda8937775a8090fb1dfeab15b34d3e33ffb"}, "arguments": {"inputs": {"type": "CONTAINER", "data": "steps.3.produce"}, "outputs": {"type": "CONTAINER", "data": "steps.3.produce"}}, "outputs": [{"id": "produce"}], "hyperparams": {"return_result": {"type": "VALUE", "data": "replace"}}}, {"type": "PRIMITIVE", "primitive": {"id": "8d38b340-f83f-4877-baaa-162f8e551736", "version": "0.3.0", "python_path": "d3m.primitives.data_transformation.construct_predictions.Common", "name": "Construct pipeline predictions output", "digest": "0e578d95719e2d0863cb3cc38a6f2cd65d2b221c3292639c79d2331086c68f75"}, "arguments": {"inputs": {"type": "CONTAINER", "data": "steps.4.produce"}, "reference": {"type": "CONTAINER", "data": "steps.1.produce"}}, "outputs": [{"id": "produce"}]}], "digest": "ebf3c8e00025180497807eb797bef534b24abd7bc4f6b6595ea32d0efd8cc3ea"}
\ No newline at end of file
{
"id": "c7c61da3-cf57-354e-8841-664853370106",
"version": "1.0.7",
"version": "1.0.8",
"name": "Goat_forward",
"keywords": [
"Geocoder"
......@@ -15,7 +15,7 @@
"installation": [
{
"type": "PIP",
"package_uri": "git+https://github.com/NewKnowledge/goat-d3m-wrapper.git@7e033a555cd1db3e3b029fdfa476c4f8f0db78c9#egg=GoatD3MWrapper"
"package_uri": "git+https://github.com/NewKnowledge/goat-d3m-wrapper.git@f24adb14d6ca228d54f1d0adb5309e0704b274d4#egg=GoatD3MWrapper"
},
{
"type": "UBUNTU",
......@@ -78,6 +78,19 @@
},
"is_configuration": false,
"min_size": 0
},
"cache_size": {
"type": "d3m.metadata.hyperparams.UniformInt",
"default": 2000,
"structural_type": "int",
"semantic_types": [
"https://metadata.datadrivendiscovery.org/types/TuningParameter"
],
"description": "LRU cache size",
"lower": 1,
"upper": 9223372036854775807,
"lower_inclusive": true,
"upper_inclusive": false
}
},
"arguments": {
......@@ -207,5 +220,5 @@
},
"structural_type": "GoatD3MWrapper.forward.goat",
"description": "Geocode all names of locations in specified columns into lat/long pairs.\n\nAttributes\n----------\nmetadata : PrimitiveMetadata\n Primitive's metadata. Available as a class attribute.\nlogger : Logger\n Primitive's logger. Available as a class attribute.\nhyperparams : Hyperparams\n Hyperparams passed to the constructor.\nrandom_seed : int\n Random seed passed to the constructor.\ndocker_containers : Dict[str, DockerContainer]\n A dict mapping Docker image keys from primitive's metadata to (named) tuples containing\n container's address under which the container is accessible by the primitive, and a\n dict mapping exposed ports to ports on that address.\nvolumes : Dict[str, str]\n A dict mapping volume keys from primitive's metadata to file and directory paths\n where downloaded and extracted files are available to the primitive.\ntemporary_directory : str\n An absolute path to a temporary directory a primitive can use to store any files\n for the duration of the current pipeline run phase. Directory is automatically\n cleaned up after the current pipeline run phase finishes.\n\nParameters\n----------\ninputs : pandas dataframe containing strings representing some geographic locations -\n (name, address, etc) - one location per row in columns marked as locationIndicator\n\nReturns\n-------\nOutputs\n Pandas dataframe, with a pair of 2 float columns -- [longitude, latitude] -- per original row/location column\n appended as new columns",
"digest": "0fe821740a9b622392a423faf2d279d2b14eddbe6adb2776eae85119f4c2a552"
"digest": "af57649af0a431b4a6ba2ca38ead53ef2e4d212479a2cc6163b5c79d036fabe9"
}
{"id": "f0b2bd13-c35c-45f1-b2d8-c63785abcc4e", "schema": "https://metadata.datadrivendiscovery.org/schemas/v0/pipeline.json", "created": "2019-11-25T17:58:42.296375Z", "inputs": [{"name": "inputs"}], "outputs": [{"data": "steps.5.produce", "name": "output predictions"}], "steps": [{"type": "PRIMITIVE", "primitive": {"id": "f31f8c1f-d1c5-43e5-a4b2-2ae4a761ef2e", "version": "0.2.0", "python_path": "d3m.primitives.data_transformation.denormalize.Common", "name": "Denormalize datasets", "digest": "fa376cea4c03e06d896d6cce68f0a18661bbbb9ebe30653ea739785eedc02198"}, "arguments": {"inputs": {"type": "CONTAINER", "data": "inputs.0"}}, "outputs": [{"id": "produce"}]}, {"type": "PRIMITIVE", "primitive": {"id": "4b42ce1e-9b98-4a25-b68e-fad13311eb65", "version": "0.3.0", "python_path": "d3m.primitives.data_transformation.dataset_to_dataframe.Common", "name": "Extract a DataFrame from a Dataset", "digest": "bddea02d001c6633722c14643ec2a065fb4a977354ddbdf74282d076da77e530"}, "arguments": {"inputs": {"type": "CONTAINER", "data": "steps.0.produce"}}, "outputs": [{"id": "produce"}]}, {"type": "PRIMITIVE", "primitive": {"id": "d510cb7a-1782-4f51-b44c-58f0236e47c7", "version": "0.5.0", "python_path": "d3m.primitives.data_transformation.column_parser.Common", "name": "Parses strings into their types", "digest": "c162d57bc73b6f30a0d600af31136b5028fe0efcd852efc15b9ad2826a2f391f"}, "arguments": {"inputs": {"type": "CONTAINER", "data": "steps.1.produce"}}, "outputs": [{"id": "produce"}]}, {"type": "PRIMITIVE", "primitive": {"id": "f6e4880b-98c7-32f0-b687-a4b1d74c8f99", "version": "1.0.7", "python_path": "d3m.primitives.data_cleaning.geocoding.Goat_reverse", "name": "Goat_reverse", "digest": "8c0e6113f363b3ac92c3f4751cb6c73bc8b8794ed97671ab23a12b687c256d59"}, "arguments": {"inputs": {"type": "CONTAINER", "data": "steps.2.produce"}}, "outputs": [{"id": "produce"}], "hyperparams": {"rampup_timeout": {"type": "VALUE", "data": 1000}}}, {"type": "PRIMITIVE", "primitive": {"id": "fe0841b7-6e70-4bc3-a56c-0670a95ebc6a", "version": "0.1.0", "python_path": "d3m.primitives.classification.xgboost_gbtree.Common", "name": "XGBoost GBTree classifier", "digest": "bd6ee736730320e83a7c773e6ce9657eea759acc5b316e75bdb5cbfd3aa5c904"}, "arguments": {"inputs": {"type": "CONTAINER", "data": "steps.3.produce"}, "outputs": {"type": "CONTAINER", "data": "steps.3.produce"}}, "outputs": [{"id": "produce"}], "hyperparams": {"return_result": {"type": "VALUE", "data": "replace"}}}, {"type": "PRIMITIVE", "primitive": {"id": "8d38b340-f83f-4877-baaa-162f8e551736", "version": "0.3.0", "python_path": "d3m.primitives.data_transformation.construct_predictions.Common", "name": "Construct pipeline predictions output", "digest": "5144bad4fea16168f6667c991e137067721dd0573c68ab1bf172ead9e2c82869"}, "arguments": {"inputs": {"type": "CONTAINER", "data": "steps.4.produce"}, "reference": {"type": "CONTAINER", "data": "steps.1.produce"}}, "outputs": [{"id": "produce"}]}], "digest": "1f62e026baf8254b545c5031c5cd5ff3b74ff3976042170f9c3073197abfb4b3"}
\ No newline at end of file
{"id": "1e3b0963-4e05-4de5-a914-a177ae838f00", "schema": "https://metadata.datadrivendiscovery.org/schemas/v0/pipeline.json", "created": "2020-01-06T21:04:02.810424Z", "inputs": [{"name": "inputs"}], "outputs": [{"data": "steps.5.produce", "name": "output predictions"}], "steps": [{"type": "PRIMITIVE", "primitive": {"id": "f31f8c1f-d1c5-43e5-a4b2-2ae4a761ef2e", "version": "0.2.0", "python_path": "d3m.primitives.data_transformation.denormalize.Common", "name": "Denormalize datasets", "digest": "045a41ff82bd660bee6bf3fcb3cd8477af6af3d930a82c0c92184d01a93e3b30"}, "arguments": {"inputs": {"type": "CONTAINER", "data": "inputs.0"}}, "outputs": [{"id": "produce"}]}, {"type": "PRIMITIVE", "primitive": {"id": "4b42ce1e-9b98-4a25-b68e-fad13311eb65", "version": "0.3.0", "python_path": "d3m.primitives.data_transformation.dataset_to_dataframe.Common", "name": "Extract a DataFrame from a Dataset", "digest": "e796f76607089407dcd9b646eaccb244f06520e759112fd21846993f88fcd208"}, "arguments": {"inputs": {"type": "CONTAINER", "data": "steps.0.produce"}}, "outputs": [{"id": "produce"}]}, {"type": "PRIMITIVE", "primitive": {"id": "d510cb7a-1782-4f51-b44c-58f0236e47c7", "version": "0.6.0", "python_path": "d3m.primitives.data_transformation.column_parser.Common", "name": "Parses strings into their types", "digest": "c0be7426515ed38d05b03f3c08cb25db1d21e955f6d2d919ead8b5cb842bf2da"}, "arguments": {"inputs": {"type": "CONTAINER", "data": "steps.1.produce"}}, "outputs": [{"id": "produce"}]}, {"type": "PRIMITIVE", "primitive": {"id": "f6e4880b-98c7-32f0-b687-a4b1d74c8f99", "version": "1.0.8", "python_path": "d3m.primitives.data_cleaning.geocoding.Goat_reverse", "name": "Goat_reverse", "digest": "50fc0a92ea5a17c9eff3c9a9b7edaa71a0251eb0d09ff64591ddd06109f90d2f"}, "arguments": {"inputs": {"type": "CONTAINER", "data": "steps.2.produce"}}, "outputs": [{"id": "produce"}], "hyperparams": {"cache_size": {"type": "VALUE", "data": 2000}}}, {"type": "PRIMITIVE", "primitive": {"id": "fe0841b7-6e70-4bc3-a56c-0670a95ebc6a", "version": "0.1.0", "python_path": "d3m.primitives.classification.xgboost_gbtree.Common", "name": "XGBoost GBTree classifier", "digest": "0483e07ef178862bfc0dbc0e6a85bda8937775a8090fb1dfeab15b34d3e33ffb"}, "arguments": {"inputs": {"type": "CONTAINER", "data": "steps.3.produce"}, "outputs": {"type": "CONTAINER", "data": "steps.3.produce"}}, "outputs": [{"id": "produce"}], "hyperparams": {"return_result": {"type": "VALUE", "data": "replace"}}}, {"type": "PRIMITIVE", "primitive": {"id": "8d38b340-f83f-4877-baaa-162f8e551736", "version": "0.3.0", "python_path": "d3m.primitives.data_transformation.construct_predictions.Common", "name": "Construct pipeline predictions output", "digest": "0e578d95719e2d0863cb3cc38a6f2cd65d2b221c3292639c79d2331086c68f75"}, "arguments": {"inputs": {"type": "CONTAINER", "data": "steps.4.produce"}, "reference": {"type": "CONTAINER", "data": "steps.1.produce"}}, "outputs": [{"id": "produce"}]}], "digest": "f5200446050832f9ed39846d06fca802dd6c9f7d1c586c8ca52a3bdfc39de86b"}
\ No newline at end of file
{
"id": "f6e4880b-98c7-32f0-b687-a4b1d74c8f99",
"version": "1.0.7",
"version": "1.0.8",
"name": "Goat_reverse",
"keywords": [
"Reverse Geocoder"
......@@ -15,7 +15,7 @@
"installation": [
{
"type": "PIP",
"package_uri": "git+https://github.com/NewKnowledge/goat-d3m-wrapper.git@7e033a555cd1db3e3b029fdfa476c4f8f0db78c9#egg=GoatD3MWrapper"
"package_uri": "git+https://github.com/NewKnowledge/goat-d3m-wrapper.git@f24adb14d6ca228d54f1d0adb5309e0704b274d4#egg=GoatD3MWrapper"
},
{
"type": "UBUNTU",
......@@ -76,6 +76,19 @@
"upper": 9223372036854775807,
"lower_inclusive": true,
"upper_inclusive": false
},
"cache_size": {
"type": "d3m.metadata.hyperparams.UniformInt",
"default": 2000,
"structural_type": "int",
"semantic_types": [
"https://metadata.datadrivendiscovery.org/types/TuningParameter"
],
"description": "LRU cache size",
"lower": 1,
"upper": 9223372036854775807,
"lower_inclusive": true,
"upper_inclusive": false
}
},
"arguments": {
......@@ -205,5 +218,5 @@
},
"structural_type": "GoatD3MWrapper.reverse.reverse_goat",
"description": "Accept a set of lat/long pair, processes it and returns a set corresponding geographic location names\n\nAttributes\n----------\nmetadata : PrimitiveMetadata\n Primitive's metadata. Available as a class attribute.\nlogger : Logger\n Primitive's logger. Available as a class attribute.\nhyperparams : Hyperparams\n Hyperparams passed to the constructor.\nrandom_seed : int\n Random seed passed to the constructor.\ndocker_containers : Dict[str, DockerContainer]\n A dict mapping Docker image keys from primitive's metadata to (named) tuples containing\n container's address under which the container is accessible by the primitive, and a\n dict mapping exposed ports to ports on that address.\nvolumes : Dict[str, str]\n A dict mapping volume keys from primitive's metadata to file and directory paths\n where downloaded and extracted files are available to the primitive.\ntemporary_directory : str\n An absolute path to a temporary directory a primitive can use to store any files\n for the duration of the current pipeline run phase. Directory is automatically\n cleaned up after the current pipeline run phase finishes.\n\nParameters\n----------\ninputs : pandas dataframe containing 2 coordinate float values, i.e., [longitude,latitude]\n representing each geographic location of interest - a pair of values\n per location/row in the specified target column\n\nReturns\n-------\nOutputs\n Pandas dataframe containing one location per longitude/latitude pair (if reverse\n geocoding possible, otherwise NaNs) appended as new columns",
"digest": "8c0e6113f363b3ac92c3f4751cb6c73bc8b8794ed97671ab23a12b687c256d59"
"digest": "a49f3a90def8cf58fdf8dbb71b80e3bcf93c8f3afcaa046aba608a2297c5f210"
}
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment