Commit d8a23889 authored by fanjicong's avatar fanjicong

updated Cornell pipelines

parent 41c17696
{
"problem": "299_libras_move_problem",
"full_inputs": [
"299_libras_move_dataset"
],
"train_inputs": [
"299_libras_move_dataset_TRAIN"
],
"test_inputs": [
"299_libras_move_dataset_TEST"
],
"score_inputs": [
"299_libras_move_dataset_SCORE"
]
}
{
"created": "2019-06-16T21:06:59.065355Z",
"digest": "6e0005297cc824ec76e96da63db7dc6f2f9223626da974e84e80b7f2ab6f1f0c",
"id": "6d7ee300-94e1-4a1c-94ca-a7e6b178b0f3",
"created": "2019-06-17T21:35:16.494034Z",
"digest": "08dbf9edcc37dc7d0de950044836bb75be1fae02a27274334ef1ad3192f537c2",
"id": "c36966ea-189a-4fb9-b8ff-11f583b545f8",
"inputs": [
{
"name": "inputs"
......@@ -254,19 +254,19 @@
},
"hyperparams": {
"alpha": {
"data": 0.1,
"data": 0.01,
"type": "VALUE"
},
"beta": {
"data": 0.1,
"data": 0.001,
"type": "VALUE"
},
"d": {
"data": 0,
"data": 50,
"type": "VALUE"
},
"maxiter": {
"data": 500,
"data": 1000,
"type": "VALUE"
}
},
......@@ -276,7 +276,7 @@
}
],
"primitive": {
"digest": "a2d6e8307f6c98e89f7417a6401966d66c180bfdfd21c203e1e3ecee0a8f44f3",
"digest": "5ae5770fa1b3ed208d436168ffe1cd01752211a400ae111a0bfbcdc55b5738e7",
"id": "e6ee30fa-af68-4bfe-9234-5ca7e7ac8e93",
"name": "Matrix Completion via Sparse Factorization",
"python_path": "d3m.primitives.collaborative_filtering.high_rank_imputer.Cornell",
......@@ -297,14 +297,7 @@
},
"hyperparams": {
"C": {
"data": 500,
"type": "VALUE"
},
"gamma": {
"data": {
"case": "float",
"value": 1
},
"data": 100,
"type": "VALUE"
},
"kernel": {
......
{
"created": "2019-06-16T21:13:04.692272Z",
"digest": "8618b77ee527910c313797358c99141bd473346a7393591b5ac74bfe2442a091",
"id": "1ba8b538-f956-4058-9e5c-12a42faeb1ca",
"created": "2019-06-17T22:46:18.047049Z",
"digest": "464489799dd4b909a5d29ca5048301f9648dd1482e497b7ee0d8cf324d1cde37",
"id": "e85a0093-ea7d-43d9-868d-fd14986852e2",
"inputs": [
{
"name": "inputs"
......@@ -176,19 +176,19 @@
},
"hyperparams": {
"alpha": {
"data": 0.001,
"data": 0.01,
"type": "VALUE"
},
"beta": {
"data": 0.001,
"data": 0.01,
"type": "VALUE"
},
"d": {
"data": 30,
"data": 100,
"type": "VALUE"
},
"maxiter": {
"data": 1000,
"data": 2000,
"type": "VALUE"
}
},
......@@ -198,7 +198,7 @@
}
],
"primitive": {
"digest": "a2d6e8307f6c98e89f7417a6401966d66c180bfdfd21c203e1e3ecee0a8f44f3",
"digest": "5ae5770fa1b3ed208d436168ffe1cd01752211a400ae111a0bfbcdc55b5738e7",
"id": "e6ee30fa-af68-4bfe-9234-5ca7e7ac8e93",
"name": "Matrix Completion via Sparse Factorization",
"python_path": "d3m.primitives.collaborative_filtering.high_rank_imputer.Cornell",
......@@ -269,7 +269,7 @@
},
"hyperparams": {
"C": {
"data": 1000,
"data": 500,
"type": "VALUE"
},
"kernel": {
......
{
"problem": "LL1_VTXC_1343_cora_problem",
"full_inputs": [
"LLL1_VTXC_1343_cora_dataset"
],
"train_inputs": [
"LL1_VTXC_1343_cora_dataset_TRAIN"
],
"test_inputs": [
"LL1_VTXC_1343_cora_dataset_TEST"
],
"score_inputs": [
"LL1_VTXC_1343_cora_dataset_SCORE"
]
}
{
"problem": "313_spectrometer_problem",
"full_inputs": [
"313_spectrometer_dataset"
],
"train_inputs": [
"313_spectrometer_dataset_TRAIN"
],
"test_inputs": [
"313_spectrometer_dataset_TEST"
],
"score_inputs": [
"313_spectrometer_dataset_SCORE"
]
}
{
"created": "2019-06-16T23:23:25.076377Z",
"digest": "2bb285ee805b41f5b6507b2905e343bc662388d7c7acb0493a1899a64b8e61db",
"id": "45ccc1a5-d135-4cc2-92b5-b4f6da75aade",
"created": "2019-06-19T14:39:54.194661Z",
"digest": "360e02ef282c925a834b87e1f45ad17d6dc4878b0f83284e0585539ddf58ca33",
"id": "3764a6bd-0602-452e-b4ca-257fe71e4c49",
"inputs": [
{
"name": "inputs"
......@@ -250,7 +250,7 @@
},
"hyperparams": {
"k": {
"data": 40,
"data": 50,
"type": "VALUE"
}
},
......@@ -260,7 +260,7 @@
}
],
"primitive": {
"digest": "9c4e254ba8e26550ba61e0f3ce2da9516ed4e024a1563feef1e1367ca999d85b",
"digest": "273fb6b1fbf70c21d74794f82127385df9d4d515a9d853e814e8f34a73e23484",
"id": "c959da5a-aa2e-44a6-86f2-a52fe2ab9db7",
"name": "Low Rank Imputer",
"python_path": "d3m.primitives.data_preprocessing.low_rank_imputer.Cornell",
......@@ -281,7 +281,7 @@
},
"hyperparams": {
"C": {
"data": 500,
"data": 100,
"type": "VALUE"
},
"gamma": {
......
{
"problem": "LL0_acled_reduced_problem",
"full_inputs": [
"LL0_acled_reduced_dataset"
],
"train_inputs": [
"LL0_acled_reduced_dataset_TRAIN"
],
"test_inputs": [
"LL0_acled_reduced_dataset_TEST"
],
"score_inputs": [
"LL0_acled_reduced_dataset_SCORE"
]
}
{
"problem": "SEMI_1040_sylva_prior_problem",
"full_inputs": [
"SEMI_1040_sylva_prior_dataset"
],
"train_inputs": [
"SEMI_1040_sylva_prior_dataset_TRAIN"
],
"test_inputs": [
"SEMI_1040_sylva_prior_dataset_TEST"
],
"score_inputs": [
"SEMI_1040_sylva_prior_dataset_SCORE"
]
}
{
"created": "2019-06-17T16:28:56.832144Z",
"digest": "c52e8be9747a80b1c1ffa5b0ca086b5bd3a1457a4b9f3e389fff2cf34c49d907",
"id": "70c7f1e7-4846-4eff-9541-f57b50e42084",
"created": "2019-06-20T02:55:54.179752Z",
"digest": "ac6b4df9c6c3d94412d398d91d14294b3686420ee89da5a1fc59a7604cfa1fcb",
"id": "4b95f3e3-dd9b-44fc-825f-9e4a4c5baf61",
"inputs": [
{
"name": "inputs"
......@@ -75,6 +75,7 @@
"hyperparams": {
"columns": {
"data": [
0,
1,
2,
3,
......@@ -137,21 +138,7 @@
60,
61,
62,
63,
64,
65,
66,
67,
68,
69,
70,
71,
72,
73,
74,
75,
76,
77
63
],
"type": "VALUE"
}
......@@ -204,10 +191,10 @@
}
],
"primitive": {
"digest": "9878fdeb255c5b4fb2beaf053e68b2913e3d7b1c26e40c530c1cb4fe562fde26",
"id": "d016df89-de62-3c53-87ed-c06bb6a23cde",
"name": "sklearn.impute.SimpleImputer",
"python_path": "d3m.primitives.data_cleaning.imputer.SKlearn",
"digest": "4183552e52f20262bfbb3711300a39216d15749d204cc7b475cad55f8dda1cfd",
"id": "d639947e-ece0-3a39-a666-e974acf4521d",
"name": "sklearn.preprocessing.data.StandardScaler",
"python_path": "d3m.primitives.data_preprocessing.standard_scaler.SKlearn",
"version": "2019.4.4"
},
"type": "PRIMITIVE"
......@@ -215,15 +202,29 @@
{
"arguments": {
"inputs": {
"data": "steps.0.produce",
"data": "steps.4.produce",
"type": "CONTAINER"
}
},
"hyperparams": {
"semantic_types": {
"data": [
"https://metadata.datadrivendiscovery.org/types/TrueTarget"
],
"alpha": {
"data": 0.01,
"type": "VALUE"
},
"d": {
"data": 20,
"type": "VALUE"
},
"epsilon": {
"data": 1,
"type": "VALUE"
},
"maxiter": {
"data": 2000,
"type": "VALUE"
},
"t": {
"data": 0.001,
"type": "VALUE"
}
},
......@@ -233,31 +234,39 @@
}
],
"primitive": {
"digest": "297a4943484bcd532650d5727e23b3d11ca702688d7b64dfb5df8bf1282eaa47",
"id": "4503a4c6-42f7-45a1-a1d4-ed69699cf5e1",
"name": "Extracts columns by semantic type",
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon",
"version": "0.2.0"
"digest": "3c4bf0571849c2af5ae11c17dff81664f166653a391d2567277a091fd1720881",
"id": "7c357e6e-7124-4f2a-8371-8021c8c95cc9",
"name": "Huber PCA",
"python_path": "d3m.primitives.feature_extraction.huber_pca.Cornell",
"version": "v0.1.1"
},
"type": "PRIMITIVE"
},
{
"arguments": {
"inputs": {
"data": "steps.5.produce",
"data": "steps.0.produce",
"type": "CONTAINER"
}
},
"hyperparams": {
"semantic_types": {
"data": [
"https://metadata.datadrivendiscovery.org/types/TrueTarget"
],
"type": "VALUE"
}
},
"outputs": [
{
"id": "produce"
}
],
"primitive": {
"digest": "98c24b0b4a8ed1f98d01dfd575144a13a019ea5c9996d17554db38b434a91876",
"id": "26fc8fd3-f6b2-4c65-8afb-edb54ed2a3e4",
"name": "Label encoder with an unseen category",
"python_path": "d3m.primitives.data_preprocessing.label_encoder.DataFrameCommon",
"digest": "297a4943484bcd532650d5727e23b3d11ca702688d7b64dfb5df8bf1282eaa47",
"id": "4503a4c6-42f7-45a1-a1d4-ed69699cf5e1",
"name": "Extracts columns by semantic type",
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon",
"version": "0.2.0"
},
"type": "PRIMITIVE"
......@@ -265,56 +274,38 @@
{
"arguments": {
"inputs": {
"data": "steps.4.produce",
"data": "steps.6.produce",
"type": "CONTAINER"
}
},
"hyperparams": {
"alpha": {
"data": 1,
"type": "VALUE"
},
"d": {
"data": 20,
"type": "VALUE"
},
"epsilon": {
"data": 0.001,
"type": "VALUE"
},
"t": {
"data": 0.001,
"type": "VALUE"
}
},
"outputs": [
{
"id": "produce"
}
],
"primitive": {
"digest": "4f2a197e6c9652fe6d29629afddd94d845d78e14619afd28b38462d9d9e65ef2",
"id": "7c357e6e-7124-4f2a-8371-8021c8c95cc9",
"name": "Huber PCA",
"python_path": "d3m.primitives.feature_extraction.huber_pca.Cornell",
"version": "v0.1.1"
"digest": "98c24b0b4a8ed1f98d01dfd575144a13a019ea5c9996d17554db38b434a91876",
"id": "26fc8fd3-f6b2-4c65-8afb-edb54ed2a3e4",
"name": "Label encoder with an unseen category",
"python_path": "d3m.primitives.data_preprocessing.label_encoder.DataFrameCommon",
"version": "0.2.0"
},
"type": "PRIMITIVE"
},
{
"arguments": {
"inputs": {
"data": "steps.7.produce",
"data": "steps.5.produce",
"type": "CONTAINER"
},
"outputs": {
"data": "steps.6.produce",
"data": "steps.7.produce",
"type": "CONTAINER"
}
},
"hyperparams": {
"C": {
"data": 1000,
"data": 100,
"type": "VALUE"
},
"kernel": {
......@@ -345,7 +336,7 @@
},
"hyperparams": {
"encoder": {
"data": 6,
"data": 7,
"type": "PRIMITIVE"
}
},
......
{
"problem": "1491_one_hundred_plants_margin_problem",
"full_inputs": [
"1491_one_hundred_plants_margin_dataset"
],
"train_inputs": [
"1491_one_hundred_plants_margin_dataset_TRAIN"
],
"test_inputs": [
"1491_one_hundred_plants_margin_dataset_TEST"
],
"score_inputs": [
"1491_one_hundred_plants_margin_dataset_SCORE"
]
}
{
"problem": "LL1_VTXC_1369_synthetic_problem",
"full_inputs": [
"LL1_VTXC_1369_synthetic_dataset"
],
"train_inputs": [
"LL1_VTXC_1369_synthetic_dataset_TRAIN"
],
"test_inputs": [
"LL1_VTXC_1369_synthetic_dataset_TEST"
],
"score_inputs": [
"LL1_VTXC_1369_synthetic_dataset_SCORE"
]
}
{
"problem": "299_libras_move_problem",
"full_inputs": [
"299_libras_move_dataset"
],
"train_inputs": [
"299_libras_move_dataset_TRAIN"
],
"test_inputs": [
"299_libras_move_dataset_TEST"
],
"score_inputs": [
"299_libras_move_dataset_SCORE"
]
}
{
"problem": "SEMI_1040_sylva_prior_problem",
"full_inputs": [
"SEMI_1040_sylva_prior_dataset"
],
"train_inputs": [
"SEMI_1040_sylva_prior_dataset_TRAIN"
],
"test_inputs": [
"SEMI_1040_sylva_prior_dataset_TEST"
],
"score_inputs": [
"SEMI_1040_sylva_prior_dataset_SCORE"
]
}
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment