Commit c01ebc47 authored by fan jicong's avatar fan jicong Committed by Mitar
Browse files

Cornell updated pipelines

parent b04e9f8e
{
"created": "2020-01-13T17:34:39.847681Z",
"digest": "52e453eceebc9446fa51668ae80876a7dc77dd2e0ee97bd521cf6e8576fa39e3",
"id": "07e848ee-756e-4fb5-b724-ef18cd130fec",
"inputs": [
{
"name": "inputs"
}
],
"outputs": [
{
"data": "steps.9.produce",
"name": "output"
}
],
"schema": "https://metadata.datadrivendiscovery.org/schemas/v0/pipeline.json",
"steps": [
{
"arguments": {
"inputs": {
"data": "inputs.0",
"type": "CONTAINER"
}
},
"outputs": [
{
"id": "produce"
}
],
"primitive": {
"digest": "2029603954acb505cb894594ca20a91af5f2b7bba931553f12fad544071ec911",
"id": "4b42ce1e-9b98-4a25-b68e-fad13311eb65",
"name": "Extract a DataFrame from a Dataset",
"python_path": "d3m.primitives.data_transformation.dataset_to_dataframe.Common",
"version": "0.3.0"
},
"type": "PRIMITIVE"
},
{
"arguments": {
"inputs": {
"data": "steps.0.produce",
"type": "CONTAINER"
}
},
"hyperparams": {
"semantic_types": {
"data": [
"https://metadata.datadrivendiscovery.org/types/Attribute"
],
"type": "VALUE"
}
},
"outputs": [
{
"id": "produce"
}
],
"primitive": {
"digest": "356d1b0c08c5046167866de7a45d926f9b8dee661b773e8040cf3b69bc3eace6",
"id": "4503a4c6-42f7-45a1-a1d4-ed69699cf5e1",
"name": "Extracts columns by semantic type",
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.Common",
"version": "0.3.0"
},
"type": "PRIMITIVE"
},
{
"arguments": {
"inputs": {
"data": "steps.1.produce",
"type": "CONTAINER"
}
},
"hyperparams": {
"columns": {
"data": [
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31,
32,
33,
34,
35,
36,
37,
38,
39,
40,
41,
42,
43,
44,
45,
46,
47,
48,
49,
50,
51,
52,
53,
54,
55,
56,
57,
58,
59,
60,
61,
62,
63,
64,
65,
66,
67,
68,
69,
70,
71,
72,
73,
74,
75,
76,
77
],
"type": "VALUE"
}
},
"outputs": [
{
"id": "produce"
}
],
"primitive": {
"digest": "101bb426df45a58c1b5f57a0c477f6535dc217fcf2334930e9c65253b1876722",
"id": "81d7e261-e25b-4721-b091-a31cd46e99ae",
"name": "Extracts columns",
"python_path": "d3m.primitives.data_transformation.extract_columns.Common",
"version": "0.1.0"
},
"type": "PRIMITIVE"
},
{
"arguments": {
"inputs": {
"data": "steps.2.produce",
"type": "CONTAINER"
}
},
"outputs": [
{
"id": "produce"
}
],
"primitive": {
"digest": "d9fe7ea33c426b78a03f39219342b319be88358b09091912177e0f4faa6bc552",
"id": "d510cb7a-1782-4f51-b44c-58f0236e47c7",
"name": "Parses strings into their types",
"python_path": "d3m.primitives.data_transformation.column_parser.Common",
"version": "0.5.0"
},
"type": "PRIMITIVE"
},
{
"arguments": {
"inputs": {
"data": "steps.0.produce",
"type": "CONTAINER"
}
},
"hyperparams": {
"semantic_types": {
"data": [
"https://metadata.datadrivendiscovery.org/types/TrueTarget"
],
"type": "VALUE"
}
},
"outputs": [
{
"id": "produce"
}
],
"primitive": {
"digest": "356d1b0c08c5046167866de7a45d926f9b8dee661b773e8040cf3b69bc3eace6",
"id": "4503a4c6-42f7-45a1-a1d4-ed69699cf5e1",
"name": "Extracts columns by semantic type",
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.Common",
"version": "0.3.0"
},
"type": "PRIMITIVE"
},
{
"arguments": {
"inputs": {
"data": "steps.4.produce",
"type": "CONTAINER"
}
},
"outputs": [
{
"id": "produce"
}
],
"primitive": {
"digest": "12cfcf2f6f39b88ee8c45cf4da240235add9e6c817d00f32f93d0d065ade3832",
"id": "26fc8fd3-f6b2-4c65-8afb-edb54ed2a3e4",
"name": "Label encoder with an unseen category",
"python_path": "d3m.primitives.data_preprocessing.label_encoder.Common",
"version": "0.2.0"
},
"type": "PRIMITIVE"
},
{
"arguments": {
"inputs": {
"data": "steps.3.produce",
"type": "CONTAINER"
},
"outputs": {
"data": "steps.3.produce",
"type": "CONTAINER"
}
},
"hyperparams": {
"alpha": {
"data": 0.01,
"type": "VALUE"
},
"beta": {
"data": 0.001,
"type": "VALUE"
},
"d": {
"data": 50,
"type": "VALUE"
},
"maxiter": {
"data": 1000,
"type": "VALUE"
}
},
"outputs": [
{
"id": "produce"
}
],
"primitive": {
"digest": "200124f95be4cceb8cead9aa722dc58c2d09c3410c41dab75e2e7e729b55d8b1",
"id": "e6ee30fa-af68-4bfe-9234-5ca7e7ac8e93",
"name": "Matrix Completion via Sparse Factorization",
"python_path": "d3m.primitives.collaborative_filtering.high_rank_imputer.Cornell",
"version": "v0.1.1"
},
"type": "PRIMITIVE"
},
{
"arguments": {
"inputs": {
"data": "steps.6.produce",
"type": "CONTAINER"
},
"outputs": {
"data": "steps.5.produce",
"type": "CONTAINER"
}
},
"hyperparams": {
"C": {
"data": 100,
"type": "VALUE"
}
},
"outputs": [
{
"id": "produce"
}
],
"primitive": {
"digest": "0bc31dcee8ad75441208bb3550ea527fe64eabbc84dc9a97b59e28c9d27bc20b",
"id": "0ae7d42d-f765-3348-a28c-57d94880aa6a",
"name": "sklearn.svm.classes.SVC",
"python_path": "d3m.primitives.classification.svc.SKlearn",
"version": "2019.6.7"
},
"type": "PRIMITIVE"
},
{
"arguments": {
"inputs": {
"data": "steps.7.produce",
"type": "CONTAINER"
}
},
"hyperparams": {
"encoder": {
"data": 5,
"type": "PRIMITIVE"
}
},
"outputs": [
{
"id": "produce"
}
],
"primitive": {
"digest": "de5bbb80e57426221055205f46441d69034383e2ed4fc4eb90ecfb980f4971ee",
"id": "39ae30f7-39ed-40af-8679-5cf108499605",
"name": "Label decoder for UnseenLabelEncoderPrimitive",
"python_path": "d3m.primitives.data_preprocessing.label_decoder.Common",
"version": "0.1.0"
},
"type": "PRIMITIVE"
},
{
"arguments": {
"inputs": {
"data": "steps.8.produce",
"type": "CONTAINER"
},
"reference": {
"data": "steps.0.produce",
"type": "CONTAINER"
}
},
"outputs": [
{
"id": "produce"
}
],
"primitive": {
"digest": "4f49e6abf7eb7ea3247eeb48f7b2fdd5fdb42f7ecc734fb3e37efada43895c6d",
"id": "8d38b340-f83f-4877-baaa-162f8e551736",
"name": "Construct pipeline predictions output",
"python_path": "d3m.primitives.data_transformation.construct_predictions.Common",
"version": "0.3.0"
},
"type": "PRIMITIVE"
}
]
}
\ No newline at end of file
{
"created": "2020-01-13T17:33:39.231457Z",
"digest": "167fdc76716e167fe3cfa5068e7d6fb405a96d201fbc6d4942b5fb32eabc9c9e",
"id": "204f67b3-4baa-4bc0-ae55-5e02bfd04b72",
"inputs": [
{
"name": "inputs"
}
],
"outputs": [
{
"data": "steps.10.produce",
"name": "output"
}
],
"schema": "https://metadata.datadrivendiscovery.org/schemas/v0/pipeline.json",
"steps": [
{
"arguments": {
"inputs": {
"data": "inputs.0",
"type": "CONTAINER"
}
},
"outputs": [
{
"id": "produce"
}
],
"primitive": {
"digest": "b1ac4776f0e916f707a6b6a74f3a36c56ea2eb37c6a255d986faf21855446073",
"id": "4b42ce1e-9b98-4a25-b68e-fad13311eb65",
"name": "Extract a DataFrame from a Dataset",
"python_path": "d3m.primitives.data_transformation.dataset_to_dataframe.Common",
"version": "0.3.0"
},
"type": "PRIMITIVE"
},
{
"arguments": {
"inputs": {
"data": "steps.0.produce",
"type": "CONTAINER"
}
},
"hyperparams": {
"semantic_types": {
"data": [
"https://metadata.datadrivendiscovery.org/types/Attribute"
],
"type": "VALUE"
}
},
"outputs": [
{
"id": "produce"
}
],
"primitive": {
"digest": "f828f4fbd3ce894ef26a264e53ac98c79d689b653b0eda497b069e42ddfebef4",
"id": "4503a4c6-42f7-45a1-a1d4-ed69699cf5e1",
"name": "Extracts columns by semantic type",
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.Common",
"version": "0.3.0"
},
"type": "PRIMITIVE"
},
{
"arguments": {
"inputs": {
"data": "steps.1.produce",
"type": "CONTAINER"
}
},
"hyperparams": {
"columns": {
"data": [
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31,
32,
33,
34,
35,
36,
37,
38,
39,
40,
41,
42,
43,
44,
45,
46,
47,
48,
49,
50,
51,
52,
53,
54,
55,
56,
57,
58,
59,
60,
61,
62,
63,
64,
65,
66,
67,
68,
69,
70,
71,
72,
73,
74,
75,
76,
77,