Commit ba1cb526 authored by Alex Gittens's avatar Alex Gittens

added ICSI updated primitives

parent d1575e40
{
"id": "ec988637-d372-48bc-b601-031eb6f186b9",
"schema": "https://metadata.datadrivendiscovery.org/schemas/v0/pipeline.json",
"created": "2019-04-30T18:25:30.284361Z",
"context": "TESTING",
"inputs": [
{
"name": "inputs"
}
],
"outputs": [
{
"data": "steps.8.produce",
"name": "output"
}
],
"steps": [
{
"type": "PRIMITIVE",
"primitive": {
"id": "4b42ce1e-9b98-4a25-b68e-fad13311eb65",
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.dataset_to_dataframe.Common",
"name": "Extract a DataFrame from a Dataset",
"digest": "f1497259d6053892263c069df6d0d08af1d6312b3934649b02bd5fead9777497"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "inputs.0"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "d510cb7a-1782-4f51-b44c-58f0236e47c7",
"version": "0.5.0",
"python_path": "d3m.primitives.data_transformation.column_parser.DataFrameCommon",
"name": "Parses strings into their types",
"digest": "c5b0ded0d7cea33aa7a271fabd52627ef2effb57ee8ad71fadc0daccac6ca50f"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.0.produce"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "4503a4c6-42f7-45a1-a1d4-ed69699cf5e1",
"version": "0.2.0",
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon",
"name": "Extracts columns by semantic type",
"digest": "f6657f45cd5a06e44a0974ebc15452f602f3498071bda6926f6b801365379df1"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.1.produce"
}
},
"outputs": [
{
"id": "produce"
}
],
"hyperparams": {
"semantic_types": {
"type": "VALUE",
"data": [
"https://metadata.datadrivendiscovery.org/types/Attribute"
]
}
}
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "4503a4c6-42f7-45a1-a1d4-ed69699cf5e1",
"version": "0.2.0",
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon",
"name": "Extracts columns by semantic type",
"digest": "f6657f45cd5a06e44a0974ebc15452f602f3498071bda6926f6b801365379df1"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.1.produce"
}
},
"outputs": [
{
"id": "produce"
}
],
"hyperparams": {
"semantic_types": {
"type": "VALUE",
"data": [
"https://metadata.datadrivendiscovery.org/types/SuggestedTarget"
]
}
}
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "34f71b2e-17bb-488d-a2ba-b60b8c305539",
"version": "0.1.0",
"python_path": "d3m.primitives.data_transformation.dataframe_to_ndarray.Common",
"name": "DataFrame to ndarray converter",
"digest": "6fbe0ab4875a76a147795bc9c36f17402ae0fe4294d47ea3b45e5a96b49cbd1b"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.3.produce"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "34f71b2e-17bb-488d-a2ba-b60b8c305539",
"version": "0.1.0",
"python_path": "d3m.primitives.data_transformation.dataframe_to_ndarray.Common",
"name": "DataFrame to ndarray converter",
"digest": "6fbe0ab4875a76a147795bc9c36f17402ae0fe4294d47ea3b45e5a96b49cbd1b"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.2.produce"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "b158a49d-5deb-462e-b7e3-e321624dad89",
"version": "2.6.0",
"python_path": "d3m.primitives.regression.fast_lad.FastLAD",
"name": "Coreset-based Fast Least Absolute Deviations Solver",
"digest": "f4b0e29c25c39ec7c175cbabfa0584325bf25f50e2b0b163cf971fdf177e296c"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.5.produce"
},
"outputs": {
"type": "CONTAINER",
"data": "steps.4.produce"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "f5241b2e-64f7-44ad-9675-df3d08066437",
"version": "0.1.0",
"python_path": "d3m.primitives.data_transformation.ndarray_to_dataframe.Common",
"name": "ndarray to Dataframe converter",
"digest": "49c72a12f8c9b51a54defe6ee1abc3aea2463682f05384e9d21244a5a797ac62"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.6.produce"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "8d38b340-f83f-4877-baaa-162f8e551736",
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.construct_predictions.DataFrameCommon",
"name": "Construct pipeline predictions output",
"digest": "102c48b3fceda217e3a217626f888803ad347875bede408fb8ab612b6a6be107"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.7.produce"
},
"reference": {
"type": "CONTAINER",
"data": "steps.0.produce"
}
},
"outputs": [
{
"id": "produce"
}
]
}
],
"digest": "4e34f58fa406cc5726bf850bdd99d72452681844fb9424136f8501c10df1cd92"
}
\ No newline at end of file
{
"problem": "LL0_207_autoPrice_problem",
"train_inputs": [
"LL0_207_dataset_TRAIN"
],
"test_inputs": [
"LL0_207_autoPrice_problem"
]
}
\ No newline at end of file
{
"id": "0a69a95e-5940-4715-adbf-91e1a6cbb627",
"schema": "https://metadata.datadrivendiscovery.org/schemas/v0/pipeline.json",
"created": "2019-04-30T18:25:23.900492Z",
"context": "TESTING",
"inputs": [
{
"name": "inputs"
}
],
"outputs": [
{
"data": "steps.8.produce",
"name": "output"
}
],
"steps": [
{
"type": "PRIMITIVE",
"primitive": {
"id": "4b42ce1e-9b98-4a25-b68e-fad13311eb65",
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.dataset_to_dataframe.Common",
"name": "Extract a DataFrame from a Dataset",
"digest": "f1497259d6053892263c069df6d0d08af1d6312b3934649b02bd5fead9777497"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "inputs.0"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "d510cb7a-1782-4f51-b44c-58f0236e47c7",
"version": "0.5.0",
"python_path": "d3m.primitives.data_transformation.column_parser.DataFrameCommon",
"name": "Parses strings into their types",
"digest": "c5b0ded0d7cea33aa7a271fabd52627ef2effb57ee8ad71fadc0daccac6ca50f"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.0.produce"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "4503a4c6-42f7-45a1-a1d4-ed69699cf5e1",
"version": "0.2.0",
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon",
"name": "Extracts columns by semantic type",
"digest": "f6657f45cd5a06e44a0974ebc15452f602f3498071bda6926f6b801365379df1"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.1.produce"
}
},
"outputs": [
{
"id": "produce"
}
],
"hyperparams": {
"semantic_types": {
"type": "VALUE",
"data": [
"https://metadata.datadrivendiscovery.org/types/Attribute"
]
}
}
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "4503a4c6-42f7-45a1-a1d4-ed69699cf5e1",
"version": "0.2.0",
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon",
"name": "Extracts columns by semantic type",
"digest": "f6657f45cd5a06e44a0974ebc15452f602f3498071bda6926f6b801365379df1"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.1.produce"
}
},
"outputs": [
{
"id": "produce"
}
],
"hyperparams": {
"semantic_types": {
"type": "VALUE",
"data": [
"https://metadata.datadrivendiscovery.org/types/SuggestedTarget"
]
}
}
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "34f71b2e-17bb-488d-a2ba-b60b8c305539",
"version": "0.1.0",
"python_path": "d3m.primitives.data_transformation.dataframe_to_ndarray.Common",
"name": "DataFrame to ndarray converter",
"digest": "6fbe0ab4875a76a147795bc9c36f17402ae0fe4294d47ea3b45e5a96b49cbd1b"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.3.produce"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "34f71b2e-17bb-488d-a2ba-b60b8c305539",
"version": "0.1.0",
"python_path": "d3m.primitives.data_transformation.dataframe_to_ndarray.Common",
"name": "DataFrame to ndarray converter",
"digest": "6fbe0ab4875a76a147795bc9c36f17402ae0fe4294d47ea3b45e5a96b49cbd1b"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.2.produce"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "90d9eefc-2db3-4738-a0e7-72eedab2d93a",
"version": "2.6.0",
"python_path": "d3m.primitives.regression.rfm_precondition_ed_gaussian_krr.RFMPreconditionedGaussianKRR",
"name": "RFM Preconditioned Gaussian Kernel Ridge Regression",
"digest": "673b009b1c3f0505968dea4fdb0551e92d8acbe7ce3dbd497d6ebe32873e36a2"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.5.produce"
},
"outputs": {
"type": "CONTAINER",
"data": "steps.4.produce"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "f5241b2e-64f7-44ad-9675-df3d08066437",
"version": "0.1.0",
"python_path": "d3m.primitives.data_transformation.ndarray_to_dataframe.Common",
"name": "ndarray to Dataframe converter",
"digest": "49c72a12f8c9b51a54defe6ee1abc3aea2463682f05384e9d21244a5a797ac62"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.6.produce"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "8d38b340-f83f-4877-baaa-162f8e551736",
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.construct_predictions.DataFrameCommon",
"name": "Construct pipeline predictions output",
"digest": "102c48b3fceda217e3a217626f888803ad347875bede408fb8ab612b6a6be107"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.7.produce"
},
"reference": {
"type": "CONTAINER",
"data": "steps.0.produce"
}
},
"outputs": [
{
"id": "produce"
}
]
}
],
"digest": "cb5442e65d7fb9e1011c14dcb23f2d42d7d3a22f9cb283082412b9ad79fc6b5f"
}
\ No newline at end of file
{
"problem": "LL0_207_autoPrice_problem",
"train_inputs": [
"LL0_207_dataset_TRAIN"
],
"test_inputs": [
"LL0_207_autoPrice_problem"
]
}
\ No newline at end of file
{
"id": "dc60b439-0660-49f4-81fb-3a8a5cf37551",
"schema": "https://metadata.datadrivendiscovery.org/schemas/v0/pipeline.json",
"created": "2019-04-30T18:25:26.243327Z",
"context": "TESTING",
"inputs": [
{
"name": "inputs"
}
],
"outputs": [
{
"data": "steps.8.produce",
"name": "output"
}
],
"steps": [
{
"type": "PRIMITIVE",
"primitive": {
"id": "4b42ce1e-9b98-4a25-b68e-fad13311eb65",
"version": "0.3.0",
"python_path": "d3m.primitives.data_transformation.dataset_to_dataframe.Common",
"name": "Extract a DataFrame from a Dataset",
"digest": "f1497259d6053892263c069df6d0d08af1d6312b3934649b02bd5fead9777497"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "inputs.0"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "d510cb7a-1782-4f51-b44c-58f0236e47c7",
"version": "0.5.0",
"python_path": "d3m.primitives.data_transformation.column_parser.DataFrameCommon",
"name": "Parses strings into their types",
"digest": "c5b0ded0d7cea33aa7a271fabd52627ef2effb57ee8ad71fadc0daccac6ca50f"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.0.produce"
}
},
"outputs": [
{
"id": "produce"
}
]
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "4503a4c6-42f7-45a1-a1d4-ed69699cf5e1",
"version": "0.2.0",
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon",
"name": "Extracts columns by semantic type",
"digest": "f6657f45cd5a06e44a0974ebc15452f602f3498071bda6926f6b801365379df1"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.1.produce"
}
},
"outputs": [
{
"id": "produce"
}
],
"hyperparams": {
"semantic_types": {
"type": "VALUE",
"data": [
"https://metadata.datadrivendiscovery.org/types/Attribute"
]
}
}
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "4503a4c6-42f7-45a1-a1d4-ed69699cf5e1",
"version": "0.2.0",
"python_path": "d3m.primitives.data_transformation.extract_columns_by_semantic_types.DataFrameCommon",
"name": "Extracts columns by semantic type",
"digest": "f6657f45cd5a06e44a0974ebc15452f602f3498071bda6926f6b801365379df1"
},
"arguments": {
"inputs": {
"type": "CONTAINER",
"data": "steps.1.produce"
}
},
"outputs": [
{
"id": "produce"
}
],
"hyperparams": {
"semantic_types": {
"type": "VALUE",
"data": [
"https://metadata.datadrivendiscovery.org/types/SuggestedTarget"
]
}
}
},
{
"type": "PRIMITIVE",
"primitive": {
"id": "34f71b2e-17bb-488d-a2ba-b60b8c305539",
"version": "0.1.0",
"python_path": "d3m.primitives.data_transformation.dataframe_to_ndarray.Common",
"name": "DataFrame to ndarray converter",
"digest":